scholarly journals Convergence of the discrete ordinates method for the transport equation

1974 ◽  
Author(s):  
P.M. Anselone ◽  
A.G. Gibbs
Author(s):  
Arpit Mittal ◽  
Sandip Mazumder

A generalized form of the Ballistic-Diffusive Equations (BDE) for approximate solution of the Boltzmann Transport Equation (BTE) for phonons is formulated. The formulation presented here is new and general in the sense that, unlike previously published formulations of the BDE, it does not require a priori knowledge of the specific heat capacity of the material. Furthermore, it does not introduce artifacts such as media and ballistic temperatures. As a consequence, the boundary conditions have clear physical meaning. In formulating the BDE, the phonon intensity is split into two components: ballistic and diffusive. The ballistic component is traditionally determined using a viewfactor formulation, while the diffusive component is solved by invoking spherical harmonics expansions. Use of the viewfactor approach for the ballistic component is prohibitive for complex large-scale geometries. Instead, in this work, the ballistic equation is solved using two different established methods that are appropriate for use in complex geometries, namely the discrete ordinates method (DOM), and the control angle discrete ordinates method (CADOM). Results of each method for solving the BDE are compared against benchmark Monte Carlo results, as well as solutions of the BTE using standalone DOM and CADOM for a two-dimensional transient heat conduction problem at various Knudsen numbers. It is found that standalone CADOM (for BTE) and hybrid CADOM-P1 (for BDE) yield the best accuracy. The hybrid CADOM-P1 is found to be the best method in terms of computational efficiency.


1992 ◽  
Vol 02 (03) ◽  
pp. 317-338 ◽  
Author(s):  
MOHAMMAD ASADZADEH ◽  
PETER KUMLIN ◽  
STIG LARSSON

We prove a regularity result for a Fredholm integral equation with weakly singular kernel, arising in connection with the neutron transport equation in an infinite cylindrical domain. The theorem states that the solution has almost two derivatives in L1, and is proved using Besov space techniques. This result is applied in the error analysis of the discrete ordinates method for the numerical solution of the neutron transport equation. We derive an error estimate in the L1-norm for the scalar flux, and as a consequence, we obtain an error bound for the critical eigenvalue.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Arpit Mittal ◽  
Sandip Mazumder

A generalized form of the ballistic-diffusive equations (BDEs) for approximate solution of the Boltzmann Transport equation (BTE) for phonons is formulated. The formulation presented here is new and general in the sense that, unlike previously published formulations of the BDE, it does not require a priori knowledge of the specific heat capacity of the material. Furthermore, it does not introduce artifacts such as media and ballistic temperatures. As a consequence, the boundary conditions have clear physical meaning. In formulating the BDE, the phonon intensity is split into two components: ballistic and diffusive. The ballistic component is traditionally determined using a viewfactor formulation, while the diffusive component is solved by invoking spherical harmonics expansions. Use of the viewfactor approach for the ballistic component is prohibitive for complex large-scale geometries. Instead, in this work, the ballistic equation is solved using two different established methods that are appropriate for use in complex geometries, namely the discrete ordinates method (DOM) and the control angle discrete ordinates method (CADOM). Results of each method for solving the BDE are compared against benchmark Monte Carlo results, as well as solutions of the BTE using standalone DOM and CADOM for two different two-dimensional transient heat conduction problems at various Knudsen numbers. It is found that standalone CADOM (for BTE) and hybrid CADOM-P1 (for BDE) yield the best accuracy. The hybrid CADOM-P1 is found to be the best method in terms of computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document