scholarly journals Thermal energy storage for power generation

1989 ◽  
Author(s):  
M.K. Drost ◽  
Z.I. Antoniak ◽  
D.R. Brown ◽  
K. Sathyanarayana
2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3089-3098
Author(s):  
Xiaoqin Huang ◽  
Fangming Yang

This paper proposes a photovoltaic fuel cell power generation system to convert solar thermal energy into electrical energy after storage. The energy conversion method of the system mainly utilizes hydrogen storage to realize long-term storage of thermal energy, and realizes continuous and stable power supply through the co-operation between the micro-gas turbine and the proton exchange membrane fuel cell. Based on the model of each component, the simulation platform of photovoltaic fuel cell hybrid thermal energy storage control power generation system is built. Based on the design principle and design requirements of photovoltaic power generation system, the photovoltaic fuel cell hybrid power generation system studied in this paper has a simple capacity. Match the design and conduct thermal energy storage management research on the system according to the system operation requirements. The paper studies the management of hybrid fuel energy storage control system for photovoltaic fuel cells. The paper is based on advanced thermal energy storage management for photovoltaic prediction and load forecasting, and through the organic combination of these three layers of thermal energy storage management to complete the thermal energy storage management of the entire system. Finally, the real-time thermal energy storage management based on power tracking control is simulated and analyzed in MATLAB/Simulink simulation environment.


2021 ◽  
Author(s):  
Bipul Krishna Saha ◽  
Basab Chakraborty ◽  
Rohan Dutta

Abstract Industrial low-grade waste heat is lost, wasted and deposited in the atmosphere and is not put to any practical use. Different technologies are available to enable waste heat recovery, which can enhance system energy efficiency and reduce total energy consumption. Power plants are energy-intensive plants with low-grade waste heat. In the case of such plants, recovery of low-grade waste heat is gaining considerable interest. However, in such plants, power generation often varies based on market demand. Such variations may adversely influence any recovery system's performance and the economy, including the Organic Rankine Cycle (ORC). ORC technologies coupled with Cryogenic Energy Storage (CES) may be used for power generation by utilizing the waste heat from such power plants. The heat of compression in a CES may be stored in thermal energy storage systems and utilized in ORC or Regenerative ORC (RORC) for power generation during the system's discharge cycle. This may compensate for the variation of the waste heat from the power plant, and thereby, the ORC system may always work under-designed capacity. This paper presents the thermo-economic analysis of such an ORC system. In the analysis, a steady-state simulation of the ORC system has been developed in a commercial process simulator after validating the results with experimental data for a typical coke-oven plant. Forty-nine different working fluids were evaluated for power generation parameters, first law efficiencies, purchase equipment cost, and fixed investment payback period to identify the best working fluid.


Author(s):  
Ali A. Jalalzadeh-Azar ◽  
Ren Anderson ◽  
Steven J. Slayzak ◽  
Joseph P. Ryan

Integrated energy systems (IES) incorporating on-site power generation provide opportunities for improving reliability in energy supply, maximizing fuel efficiency, and enhancing environmental quality. To fully realize these attributes, optimum design and dynamic performance of integrated systems for a given application have to be pursued. Whether referred to as cogeneration, combined heat and power (CHP) or building cooling, heating, and power (BCHP), integrated energy systems manifest effective energy management aimed at closing spatial and temporal gaps between demand and supply of electrical and thermal energy. This is accomplished by on-site power production and utilization of the resulting thermal energy availability for thermally-driven technologies including desiccant dehumidification, absorption cooling, and space heating. The notion that the demands for thermal and electrical energy are not always congruent and in phase signifies the importance of considering thermal energy storage (TES) for integration. This paper explores the potential impact of implementing TES technology on the overall performance of integrated energy systems from the first- and second-law perspectives. In doing so, the dynamics of packed bed thermal energy storage systems for potential energy recovery from the exhaust gas of microturbines are investigated. Using a validated simulation model, the transient thermal response of these TES systems is examined via parametric analyses that allow variation in the thermal energy availability and physical characteristics of the packed beds. The parasitic electrical energy requirement associated with the pressure losses in the packed beds is included in the performance assessment. The results of this study are indicative of the promising role of TES in integrated energy systems.


Sign in / Sign up

Export Citation Format

Share Document