scholarly journals Comparative study of water boiling in a vertical tube under temperature-controlled or heat-flux-controlled boundary conditions. [LMFBR]

1983 ◽  
Author(s):  
J. J. Carbajo
2014 ◽  
Vol 611 ◽  
pp. 46-53 ◽  
Author(s):  
Ladislav Novotný ◽  
Vladimír Ivančo

In the paper the principle of welding simulation is presented and the methods of solution of phase transformation are described. The first part characterizes elementary equations of heat transient solution, boundary conditions during welding simulation (prescribing moving heat flux, convection, radiation). The methods of phase transformations’ solution are described for diffusion processes as well as diffusionless processes.


2019 ◽  
Author(s):  
A. R. Bahari ◽  
M. A. Yunus ◽  
M. N. Abdul Rani ◽  
W. I. I. Wan Iskandar Mirza ◽  
Haizuan A. R.

2016 ◽  
Author(s):  
Ignacio Hermoso de Mendoza ◽  
Jean-Claude Mareschal ◽  
Hugo Beltrami

Abstract. A one-dimensional (1-D) ice flow and heat conduction model is used to calculate the temperature and heat flux profiles in the ice and to constrain the parameters characterizing the ice flow and the thermal boundary conditions at the Dome C drilling site in East Antarctica. We use the reconstructions of ice accumulation, glacier height and air surface temperature histories as boundary conditions to calculate the ice temperature profile. The temperature profile also depends on a set of poorly known parameters, the ice velocity profile and magnitude, basal heat flux, and air-ice surfaces temperature coupling. We use Monte Carlo methods to search the parameters' space of the model, compare the model output with the temperature data, and find probability distributions for the unknown parameters. We could not determine the sliding ratio because it has no effect on the thermal profile, but we could constrain the flux function parameter p that determines the velocity profile. We determined the basal heat flux qb = 49.0  ± 2.7 (2σ)m W m−2, almost equal to the apparent value. We found an ice surface velocity of vsur = 2.6 ± 1.9 (2σ)m y−1 and an air-ice temperature coupling of 0.8 ± 1.0(2σ)K. Our study confirms that the heat flux is low and does not destabilize the ice sheet in east Antarctica.


2001 ◽  
Vol 67 (653) ◽  
pp. 128-134
Author(s):  
Keishi TAKESHIMA ◽  
Terushige FUJII ◽  
Nobuyuki tAKENAKA ◽  
Hitoshi ASANO ◽  
Takamitsu KONDO

Sign in / Sign up

Export Citation Format

Share Document