scholarly journals Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report

1998 ◽  
Author(s):  
M.D. Zoback
Eos ◽  
2010 ◽  
Vol 91 (22) ◽  
pp. 197-199 ◽  
Author(s):  
mark Zoback ◽  
Stephen Hickman ◽  
William Ellsworth

Eos ◽  
1994 ◽  
Vol 75 (12) ◽  
pp. 137 ◽  
Author(s):  
Stephen Hickman ◽  
Mark Zoback ◽  
LeLand Younker ◽  
William Ellsworth

1995 ◽  
Vol 117 (4) ◽  
pp. 263-270 ◽  
Author(s):  
S. H. Hickman ◽  
L. W. Younker ◽  
M. D. Zoback ◽  
G. A. Cooper

We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.


2011 ◽  
Vol 11 ◽  
pp. 14-28 ◽  
Author(s):  
M. Zoback ◽  
S. Hickman ◽  
W. Ellsworth ◽  

The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2&ndash;3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting &ndash; earthquake nucleation, propagation, and arrest &ndash; in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature. <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.11.02.2011" target="_blank">10.2204/iodp.sd.11.02.2011</a>


2021 ◽  
Vol 10 (5) ◽  
pp. 332
Author(s):  
Elliott M. Holmes ◽  
Andrea E. Gaughan ◽  
Donald J. Biddle ◽  
Forrest R. Stevens ◽  
Jafar Hadizadeh

Core samples obtained from scientific drilling could provide large volumes of direct microstructural and compositional data, but generating results via the traditional treatment of such data is often time-consuming and inefficient. Unifying microstructural data within a spatially referenced Geographic Information System (GIS) environment provides an opportunity to readily locate, visualize, correlate, and apply remote sensing techniques to the data. Using 26 core billet samples from the San Andreas Fault Observatory at Depth (SAFOD), this study developed GIS-based procedures for: 1. Spatially referenced visualization and storage of various microstructural data from core billets; 2. 3D modeling of billets and thin section positions within each billet, which serve as a digital record after irreversible fragmentation of the physical billets; and 3. Vector feature creation and unsupervised classification of a multi-generation calcite vein network from cathodluminescence (CL) imagery. Building on existing work which is predominantly limited to the 2D space of single thin sections, our results indicate that a GIS can facilitate spatial treatment of data even at centimeter to nanometer scales, but also revealed challenges involving intensive 3D representations and complex matrix transformations required to create geographically translated forms of the within-billet coordinate systems, which are suggested for consideration in future studies.


1993 ◽  
Author(s):  
Sandra S. Schulz ◽  
Robert E. Wallace

Sign in / Sign up

Export Citation Format

Share Document