Integrated dry NO{sub x}/SO{sub 2} emissions control system performance summary

1997 ◽  
Author(s):  
T Hunt ◽  
L J Muzio ◽  
R Smith ◽  
D Jones ◽  
J L Hebb ◽  
...  
2021 ◽  
Vol 11 (2) ◽  
pp. 704
Author(s):  
Hosein Gholami-Khesht ◽  
Pooya Davari ◽  
Frede Blaabjerg

The three-phase inductor and capacitor filter (LC)-filtered voltage source inverter (VSI) is subjected to uncertain and time-variant parameters and disturbances, e.g., due to aging, thermal effects, and load changes. These uncertainties and disturbances have a considerable impact on the performance of a VSI’s control system. It can degrade system performance or even cause system instability. Therefore, considering the effects of all system uncertainties and disturbances in the control system design is necessary. In this respect and to tackle this issue, this paper proposes an adaptive model predictive control (MPC), which consists of three main parts: an MPC, an augmented state-space model, and an adaptive observer. The augmented state-space model considers all system uncertainties and disturbances and lumps them into two disturbance inputs. The proposed adaptive observer determines the lumped disturbance functions, enabling the control system to keep the nominal system performance under different load conditions and parameters uncertainty. Moreover, it provides load-current-sensorless operation of MPC, which reduces the size and cost, and simultaneously improves the system reliability. Finally, MPC selects the proper converter voltage vector that minimizes the tracking errors based on the augmented model and outputs of the adaptive observer. Simulations and experiments on a 5 kW VSI examine the performance of the proposed adaptive MPC under different load conditions and parameter uncertainties and compare them with the conventional MPC.


2002 ◽  
Vol 35 (1) ◽  
pp. 387-392 ◽  
Author(s):  
G.A. Dumont ◽  
L. Kammer ◽  
B.J. Allison ◽  
L. Ettaleb ◽  
A.A. Roche

2013 ◽  
Vol 631-632 ◽  
pp. 1106-1110
Author(s):  
Wei Zhao ◽  
Qiang Wang ◽  
Sheng Li Song

In the tyred machinery chassis dynamometer control system, a fuzzy PID controller was used to adjust the exciting current of a DC dynamometer in order to change the resistance load torque, so the requirement of roller load for simulating the run resistance from the road surface was satisfied. A fuzzy PID arithmetic was designed to control the resistance loads, the system performance was improved by simulation. The software of the detection line measure-control system was designed in VB, the technical parameters of the machinery chassis could the automatically detected.


Author(s):  
Samuel Davies ◽  
Sivagunalan Sivanathan ◽  
Ewen Constant ◽  
Kary Thanapalan

AbstractThis paper describes the design of an advanced solar tracking system development that can be deployed for a range of applications. The work focused on the design and implementation of an advanced solar tracking system that follow the trajectory of the sun’s path to maximise the power capacity generated by the solar panel. The design concept focussed on reliability, cost effectiveness, and scalability. System performance is of course a key issue and is at the heart of influencing the hardware, software and mechanical design. The result ensured a better system performance achieved. Stability issues were also addressed, in relation to optimisation and reliability. The paper details the physical tracker device developed as a prototype, as well as the proposed advanced control system for optimising the tracking.


Sign in / Sign up

Export Citation Format

Share Document