Continuous high pressure lump coal feeder design study. Final report

1977 ◽  
Author(s):  
S. F. Fields

1964 ◽  
Author(s):  
◽  
◽  






2019 ◽  
Vol 11 (10) ◽  
pp. 2731 ◽  
Author(s):  
Hao Yan ◽  
Jixiong Zhang ◽  
Nan Zhou ◽  
Junli Chen

The enhancement of lump coal percentage (LCP) is of great significance for most aging mines to achieve the production reduction and quality improvement. In order to enhance the LCP of hard coal seam in fully mechanized mining face and prolong the service life of aging mines, this paper puts forward the technological path of LCP enhancement using high-pressure pulsed hydraulic fracturing (HPPHF) based on the detailed analysis of the main factors controlling LCP. By analyzing the correlation between coal fracturing and LCP, the enhancement mechanism of LCP through HPPHF was concluded. Using the extended finite element method, a fluid–solid coupling numerical model of high-pressure pulsed water injection into coal seam was established, and effects of the fracturing method, pulse amplitude, pulse frequency, and water injection pressure on fracturing performance were assessed. Simulation results demonstrate that HPPHF can effectively reduce the required maximum pressure in fracturing, thus providing a higher percentage of coal lumps with lower energy consumption through the repeated pulsed loading of coal masses. Variations in pulsed pressure amplitude and frequency, as well as water injection pressure were positively correlated with fracturing performance. By their effect on the fracturing performance, we found that water injection pressure had the greatest influence, and the pulse amplitude and frequency had similar effects. At the same time, “high amplitude-high frequency” and “high amplitude-low frequency” had characteristics of short initiation time, large initiation pressure, but small fracture width, while “low amplitude-high frequency” and “low amplitude-low frequency” had characteristics of slow initiation speed, low initiation pressure, but large fracture width. Through the field test results in the fully mechanized mining face of Shichangwan Coal Mine, it was found that LCP with a diameter range of 13–100 mm was significantly enhanced by HPPHF. The present study is considered quite instrumental in providing a theoretical foundation for enhancing the LCP of hard coal seams and the sustainable development of coal mine enterprises.



1968 ◽  
Vol 90 (1) ◽  
pp. 21-37 ◽  
Author(s):  
P. Goldstein

The following report is the third and last in a series describing the progress of “A Research Study on Internal Corrosion of High Pressure Boilers.” The first report described the background, scope, and organization of the program as well as the test facility. The second report discussed the methods of testing and the results of the first six runs. This final report describes the results of the last six tests and discusses the conclusions drawn from all of Phases II and III. The scope and an outline of seven tests composing the newly scheduled Phase IV program are also included. The results of runs with three types of boiler water treatment, fouled heat transfer surfaces, and conditions simulating fresh water and seawater condenser leakage are included. Data relating to deposition and corrosion in these environments are presented with particular emphasis on the severe corrosion experienced with simulated seawater condenser leakage.



Sign in / Sign up

Export Citation Format

Share Document