scholarly journals Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

1998 ◽  
Author(s):  
L.L. Taylor ◽  
J.R. Wilson ◽  
L.C. Sanchez ◽  
R. Aguilar ◽  
H.R. Trellue ◽  
...  
2018 ◽  
Author(s):  
Kaushik Banerjee ◽  
Thomas M. Evans ◽  
Gregory G. Davidson ◽  
Steven P. Hamilton

2003 ◽  
Vol 807 ◽  
Author(s):  
Peter Wikberg ◽  
Kaj Ahlbom ◽  
Olle Olsson

ABSTRACTThe Swedish nuclear waste management programme has entered the site investigation phase. Early 2002 SKB received permission from the municipalities of Östhammar and Oskarshamn to perform site investigations for a potential deep geologic repository for spent nuclear fuel. The goal of the site investigation phase is to obtain a permit to build the deep repository for spent nuclear fuel. In parallel with the investigations, consultations will be held with county administrative boards, regulatory authorities and municipalities, as well as with members of the public.


Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.


Author(s):  
Si Y. Lee

The engineering viability of disposal of aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) in a geologic repository requires a thermal analysis to provide the temperature history of the waste form. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal system and as input to assess the chemical and physical behavior of the waste form within the Waste Package (WP). The leading codisposal WP design proposes that a central DOE Al-SNF canister be surrounded by five Defense Waste Process Facility (DWPF) glass log canisters, that is, High-level Waste Glass Logs (HWGL’s), and placed into a WP in a geologic disposal system. A DOE SNF canister having about 0.4318m diameter is placed along the central horizontal axis of the WP. The five HWGL’s will be located around the peripheral region of the DOE SNF canister within the cylindrical WP container. The codisposal WP will be laid down horizontally in a drift repository. In this situation, two waste form options for Al-SNF disposition are considered using the codisposal WP design configurations. They are the direct Al-SNF form and the melt-dilute ingot. In the present work, the reference geologic and design conditions are assumed for the analysis even though the detailed package design is continuously evolved. This paper primarily dealt with the thermal performance internal to the codisposal WP for the qualification study of the WP containing Al-SNF. Thermal analysis methodology and decay heat source terms have been developed to calculate peak temperatures and temperature profiles of Al-SNF package in the DOE spent nuclear fuel canister within the geologic codisposal WP.


2004 ◽  
Vol 824 ◽  
Author(s):  
J. I. Friese ◽  
M. Douglas ◽  
E. C. Buck ◽  
S. B. Clark ◽  
B. D. Hanson

AbstractAn initial uranium phase that has been observed to form during the corrosion of spent nuclear fuel is the uranium oxy-hydroxide metaschoepite. It has been proposed that neptunium(V) solubility can be limited by its association with this uranium phase. Metaschoepite has been synthesized in the presence of neptunium(V) over the pH range modeled in the proposed Yucca Mountain geologic repository. Uranium (VI) phases were synthesized by varying pH and neptunium concentrations. Results of neptunium association with the uranium alteration phases are presented and the relationship to dissolved neptunium concentrations discussed.


Sign in / Sign up

Export Citation Format

Share Document