Centralization of Canada’s Spent Nuclear Fuel

Author(s):  
Krista Nicholson ◽  
John McDonald ◽  
Shona Draper ◽  
Brian M. Ikeda ◽  
Igor Pioro

Currently in Canada, spent fuel produced from Nuclear Power Plants (NPPs) is in the interim storage all across the country. It is Canada’s long-term strategy to have a national geologic repository for the disposal of spent nuclear fuel for CANada Deuterium Uranium (CANDU) reactors. The initial problem is to identify a means to centralize Canada’s spent nuclear fuel. The objective of this paper is to present a solution for the transportation issues that surround centralizing the waste. This paper reviews three major components of managing and the transporting of high-level nuclear waste: 1) site selection, 2) containment and 3) the proposed transportation method. The site has been selected based upon several factors including proximity to railways and highways. These factors play an important role in the site-selection process since the location must be accessible and ideally to be far from communities. For the containment of the spent fuel during transportation, a copper-shell container with a steel structural infrastructure was selected based on good thermal, structural, and corrosion resistance properties has been designed. Rail has been selected as the method of transporting the container due to both the potential to accommodate several containers at once and the extensive railway system in Canada.

Author(s):  
Bo Yang ◽  
He-xi Wu ◽  
Yi-bao Liu

With the sustained and rapid development of the nuclear power plants, the spent fuel which is produced by the nuclear power plants will be rapidly rising. Spent fuel is High-level radioactive waste and should be disposed safely, which is important for the environment of land, public safety and health of the nuclear industry, the major issues of sustainable development and it is also necessary part for the nuclear industry activities. It is important to study and resolve the high-level radioactive waste repository problem. Spent nuclear fuel is an important component in the radioactive waste, The KBS-3 canister for geological disposal of spent nuclear fuel in Sweden consists of a ductile cast iron insert and a copper shielding. The ductile cast iron insert provides the mechanical strength whereas the copper protects the canister from corrosion. The canister inserts material were referred to as I24, I25 and I26, Spent nuclear fuel make the repository in high radiant intensity. The radiation analysis of canister insert is important in canister transport, the dose analysis of repository and groundwater radiolysis. Groundwater radiolysis, which produces oxidants (H2O2 and O2), will break the deep repository for spent nuclear fuel. The dose distribution of canister surface with different kinds of canister inserts (I24, I25 and I26) is calculated by MCNP (Ref. 1). Analysing the calculation results, we offer a reference for selecting canister inserts material.


2019 ◽  
pp. 82-87
Author(s):  
Ya. Kostiushko ◽  
O. Dudka ◽  
Yu. Kovbasenko ◽  
A. Shepitchak

The introduction of new fuel for nuclear power plants in Ukraine is related to obtaining a relevant license from the regulatory authority for nuclear and radiation safety of Ukraine. The same approach is used for spent nuclear fuel (SNF) management system. The dry spent fuel storage facility (DSFSF) is the first nuclear facility created for intermediate dry storage of SNF in Ukraine. According to the design based on dry ventilated container storage technology by Sierra Nuclear Corporation and Duke Engineering and Services, ventilated storage containers (VSC-VVER) filled with SNF of VVER-1000 are used, which are located on a special open concrete site. Containers VSC-VVER are modernized VSC-24 containers customized for hexagonal VVER-1000 spent fuel assemblies. The storage safety assessment methodology was created and improved directly during the licensing process. In addition, in accordance with the Energy Strategy of Ukraine up to 2035, one of the key task is the further diversification of nuclear fuel suppliers. Within the framework of the Executive Agreement between the Government of Ukraine and the U.S. Government, activities have been underway since 2000 on the introduction of Westinghouse fuel. The purpose of this project is to develop, supply and qualify alternative nuclear fuel compatible with fuel produced in Russia for Ukrainian NPPs. In addition, a supplementary approach to safety analysis report is being developed to justify feasibility of loading new fuel into the DSFSF containers. The stated results should demonstrate the fulfillment of design criteria under normal operating conditions, abnormal conditions and design-basis accidents of DSFSF components.  Thus, the paper highlights both the main problems of DSFSF licensing and obtaining permission for placing new fuel types in DSFSF.


2020 ◽  
pp. 62-71
Author(s):  
M. Sapon ◽  
O. Gorbachenko ◽  
S. Kondratyev ◽  
V. Krytskyy ◽  
V. Mayatsky ◽  
...  

According to regulatory requirements, when carrying out handling operations with spent nuclear fuel (SNF), prevention of damage to the spent fuel assemblies (SFA) and especially fuel elements shall be ensured. For this purpose, it is necessary to exclude the risk of SFA falling, SFA uncontrolled displacements, prevent mechanical influences on SFA, at which their damage is possible. Special requirements for handling equipment (in particular, cranes) to exclude these dangerous events, the requirements for equipment strength, resistance to external impacts, reliability, equipment design solutions, manufacturing quality are analyzed in this work. The requirements of Ukrainian and U.S. regulatory documents also are considered. The implementation of these requirements is considered on the example of handling equipment, in particular, spent nuclear fuel storage facilities. This issue is important in view of creation of new SNF storage facilities in Ukraine. These facilities include the storage facility (SFSF) for SNF from water moderated power reactors (WWER): a Сentralized SFSF for storing SNF of Rivne, Khmelnitsky and South-Ukraine Nuclear Power Plants (СSFSF), and SFSF for SNF from high-power channel reactors (RBMK): a dry type SFSF at Chornobyl nuclear power plant (ISF-2). After commissioning of these storage facilities, all spent nuclear fuel from Ukrainian nuclear power plants will be placed for long-term “dry” storage. The safety of handling operations with SNF during its preparation for long-term storage is an important factor.


Author(s):  
Je´roˆme Galtier

For 45 years TN International has been involved in the radioactive materials transportation field. Since the beginning the spent nuclear fuel transportation has been its core business. During all these years TN International, now part of AREVA, has been able to anticipate and fulfill the needs for new transport or storage casks designed to fit the nuclear industry evolutions. A whole fleet of casks able to transport all the materials of the nuclear fuel cycle has been developed. In this presentation we will focus on the casks used to transport the fresh and used MOX fuel. To transport the fresh MOX BWR and PWR fuel, TN International has developed two designs of casks: the MX 6 and the MX 8. These casks are and have been used to transport MOX fuel for French, German, Swiss and in a near future Japanese nuclear power plants. A complete set of baskets have been developed to optimize the loading in terms of integrated dose and also of course capacity. MOX used fuel has now its dedicated cask: the TN112 which certificate of approval has been obtained in July 2008. This cask is able to transport 12 MOX spent fuel elements with a short cooling time. The first loading of the cask has been performed in September 2008 in the EDF nuclear power plant of Saint-Laurent-des-Eaux. By its continuous involvement in the nuclear transportation field, TN International has been able to face the many challenges linked to the radioactive materials transportation especially talking of MOX fuel. TN International will also have to face the increasing demand linked to the nuclear renaissance.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
A. Schwenk-Ferrero

Germany is phasing-out the utilization of nuclear energy until 2022. Currently, nine light water reactors of originally nineteen are still connected to the grid. All power plants generate high-level nuclear waste like spent uranium or mixed uranium-plutonium dioxide fuel which has to be properly managed. Moreover, vitrified high-level waste containing minor actinides, fission products, and traces of plutonium reprocessing loses produced by reprocessing facilities has to be disposed of. In the paper, the assessments of German spent fuel legacy (heavy metal content) and the nuclide composition of this inventory have been done. The methodology used applies advanced nuclear fuel cycle simulation techniques in order to reproduce the operation of the German nuclear power plants from 1969 till 2022. NFCSim code developed by LANL was adopted for this purpose. It was estimated that ~10,300 tonnes of unreprocessed nuclear spent fuel will be generated until the shut-down of the ultimate German reactor. This inventory will contain ~131 tonnes of plutonium, ~21 tonnes of minor actinides, and 440 tonnes of fission products. Apart from this, ca.215 tonnes of vitrified HLW will be present. As fission products and transuranium elements remain radioactive from 104to 106years, the characteristics of spent fuel legacy over this period are estimated, and their impacts on decay storage and final repository are discussed.


10.6036/10156 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 355-358
Author(s):  
Pablo Fernández Arias ◽  
DIEGO VERGARA RODRIGUEZ

Centralized Temporary Storage Facility (CTS) is an industrial facility designed to store spent fuel (SF) and high level radioactive waste (HLW) generated at Spanish nuclear power plants (NPP) in a single location. At the end of 2011, the Spanish Government approved the installation of the CTS in the municipality of Villar de Cañas in Cuenca. This approval was the outcome of a long process of technical studies and political decisions that were always surrounded by great social rejection. After years of confrontations between the different political levels, with hardly any progress in its construction, this infrastructure of national importance seems to have been definitively postponed. The present research analyzes the management strategy of SF and HLW in Spain, as well as the alternative strategies proposed, taking into account the current schedule foreseen for the closure of the Spanish NPPs. In view of the results obtained, it is difficult to affirm that the CTS will be available in 2028, with the possibility that its implementation may be delayed to 2032, or even that it may never happen, making it necessary to adopt an alternative strategy for the management of GC and ARAR in Spain. Among the different alternatives, the permanence of the current Individualized Temporary Stores (ITS) as a long-term storage strategy stands out, and even the possibility of building several distributed temporary storage facilities (DTS) in which to store the SF and HLW from several Spanish NPP. Keywords: nuclear waste, storage, nuclear power plants.


2021 ◽  
Vol 7 (1) ◽  
pp. 9-13
Author(s):  
David A. Hakobyan ◽  
Victor I. Slobodchuk

The problems of reprocessing and long-term storage of spent nuclear fuel (SNF) at nuclear power plants with RBMK reactors have not been fully resolved so far. For this reason, nuclear power plants are forced to search for new options for the disposal of spent fuel, which can provide at least temporary SNF storage. One of the possible solutions to this problem is to switch to compacted SNF storage in reactor spent fuel pools (SFPs). As the number of spent fuel assemblies (SFAs) in SFPs increases, a greater amount of heat is released. In addition, no less important is the fact that a place for emergency FA discharging should be provided in SFPs. The paper presents the results of a numerical simulation of the temperature conditions in SFPs both for compacted SNF storage and for emergency FA discharging. Several types of disturbances in normal SFP cooling mode are considered, including partial loss of cooling water and exposure of SFAs. The simulation was performed using the ANSYS CFX software tool. Estimates were made of the time for heating water to the boiling point, as well as the time for heating the cladding of the fuel elements to a temperature of 650 °С. The most critical conditions are observed in the emergency FA discharging compartment. The results obtained make it possible to estimate the time that the personnel have to restore normal cooling mode of the spent fuel pool until the maximum temperature for water and spent fuel assemblies is reached.


Author(s):  
C. Baroux ◽  
M. Detrilleaux ◽  
G. Demazy

Abstract Spent nuclear fuel has been stored at the DOEL power station in Belgium in dual-purpose metal casks since 1995. The casks were procured from TRANSNUCLEAIRE by SYNATOM to meet the operational demands for on-site dry storage solutions for fuel arising from the four PWR reactors at DOEL. The TN 24 type of cask was chosen and a range of different cask types were developed. The initial requirement was for dual purpose cask to contain fuel from the DOEL units 3 and 4, these having similar fuel types but different lengths, and thus two new members of the TN 24 family were developed; the TN 24 D and TN 24 XL with capacities of 28 and 24 SFA’s. These casks were licensed as B(U) fissile packagings with approval certificates granted by the French and validated by the Belgium competent authorities for the transport configurations. Both cask designs were also analyzed by TRANSNUCLEAIRE in their storage configurations to ensure that the criteria for safe interim storage could be met. Since 1995, a total of 18 TN 24 D and TN 24 XL casks have been loaded with spent fuel assemblies with an average burn-up of 40,000 MWd/tU. SYNATOM subsequently decided to purchase further casks for DOEL 3 and 4 fuels with higher enrichments, higher burn-ups and shorter cooling times. TRANSNUCLEAIRE developed the TN 24 DH and TN 24 XLH casks within the similar envelope size and weight limits. The increase in performance was achieved by an in-depth optimization of each design in terms of radiation shielding, heat transfer and criticality safety. This paper shows how this optimization process was undertaken for the TN 24 DH and TN 24 XLH casks, 16 of which have been ordered by SYNATOM. DOEL 1 and 2 units use much shorter PWR fuel and it was decided to ship the fuel to unit 3 with an internal transfer cask because the handling limitations in the DOEL 1 and 2 pool prohibited the loading of a high capacity dual purpose transport/storage cask. The TN 24 SH cask was subsequently designed for DOEL 1 and 2 PWR fuel with a capacity of 37 assemblies and nine of there casks have been ordered by SYNATOM. The casks are fitted with monitoring devices to detect any change in the performance of the double metal O ring closure system and none of the casks has shown any deterioration in leaktightness. This paper examines the operation experience of loading and storing more than 30 TN 24 dual purpose casks and compares the performance with design expectations.


Sign in / Sign up

Export Citation Format

Share Document