Site Investigations of Potential Repository Sites in Sweden

2003 ◽  
Vol 807 ◽  
Author(s):  
Peter Wikberg ◽  
Kaj Ahlbom ◽  
Olle Olsson

ABSTRACTThe Swedish nuclear waste management programme has entered the site investigation phase. Early 2002 SKB received permission from the municipalities of Östhammar and Oskarshamn to perform site investigations for a potential deep geologic repository for spent nuclear fuel. The goal of the site investigation phase is to obtain a permit to build the deep repository for spent nuclear fuel. In parallel with the investigations, consultations will be held with county administrative boards, regulatory authorities and municipalities, as well as with members of the public.

Author(s):  
J A Richardson

Commercial reactor nuclear power generation in the United States is produced by 107 units and, during 1996, represented over 21 per cent of the nation's electricity generation in 34 of the 50 states and, through electric power wheeling, between states in most of the 48 contiguous states. Spent fuel is stored in fuel pools at 70 sites around the country and the projected rate of spent fuel production indicates that the current pool storage will be exceeded in the out years of 2000, 2010 and 2020 at 40, 67 and 69 of these sites respectively. The total accumulation projected by the end of 1996 at reactor sites is 33 700 metric tons of heavy metal (MTHM), with projections for increasing accumulations at annual rates of between 1800 and 2000 to produce an end of life for all commercial nuclear reactors of about 86 000 MTHM. There are presently eight facilities in six states with out-of-pool dry storage amounting to 1010 MTHM and this dry storage demand will increase. Based on all current commercial reactors achieving their 40 year licensed operation lifetimes, the dry storage needs will increase to 3128 MTHM at 28 sites and 20 states by 2000 and 11 307 MTHM at 58 sites in 32 states by 2010; the year 2010 is the present scheduled operation date for the federal mined geological disposal repository being characterized by the USDOE at Yucca Mountain, Nevada. The enabling statute for the federal high-level radioactive waste management programme is the 1982 Nuclear Waste Policy Act (NWPA) which charges the USDOE with the responsibility for the disposal of HLW and spent nuclear fuel. The Act also charges the utilities with the responsibility for managing their spent nuclear fuel until the USDOE can accept it into the federal waste management system. The funding for the federal programme is also stipulated by the Act with the creation of the Nuclear Waste Fund, through which the electric utilities entered into contract with the USDOE by payment of a fee of 1 mill per kilowatt hour sold and for which the USDOE would start collection of spent fuel from the reactor sites starting 31 January 1998.


Author(s):  
Matti Kojo

The aim of the paper is to analyse the local negotiation process between the Municipality of Eurajoki and the nuclear power company Teollisuuden Voima (TVO) and the nuclear waste management company Posiva Oy. The aim of the negotiations was to find an acceptable form of compensation for siting a spent nuclear fuel repository in Olkiluoto, Finland. The paper includes background information on the siting process in Finland, the local political setting in the Municipality of Eurajoki and a description of the negotiation process. The analysis of the negotiations on compensation is important for better understanding the progress of the Finnish siting process. The paper describes the picture of the contest to host the spent nuclear fuel repository. It also provides more information on the relationship between the Municipality of Eurajoki and the power company TVO. The negotiations on compensation and the roles of various players in the negotiations have not been studied in detail because the minutes of the Vuojoki liaison group were not available before the decision of the Supreme Administrative Court in May 2006.


Author(s):  
Matti Kojo ◽  
Mika Kari ◽  
Tapio Litmanen

The aim of the paper is to provide updated information on local opinion regarding the siting of a spent nuclear fuel repository in Finland. The main question is how the residents of the municipality perceive the threats and benefits of the repository. In accordance with the Decision in Principle by the Council of State passed in 2000, the Olkiluoto area in Municipality of Eurajoki was chosen as the location for the repository to accommodate spent nuclear fuel produced in Finland. Updated information on local opinions is needed as the siting process is approaching the next phase, the application for a construction license by 2012. The nuclear waste management company Posiva, owned by the utilities Teollisuuden Voima and Fortum Power and Heat, has also applied for a new Decision in Principle (DiP) for expansion of the repository. The data provided in this paper is based on a survey carried out in June 2008. The respondents were selected from the residents of the municipality of Eurajoki and the neighbouring municipalities using stratified random sampling (N = 3000). The response rate of the survey was 20% (N = 606). The paper is part of a joint research project between the University of Jyva¨skyla¨ and the University of Tampere. The research project “Follow-up research regarding socio-economic effects and communication of final disposal facility of spent nuclear fuel in Eurajoki and its neighbouring municipalities” is funded by the Finnish Research Programme on Nuclear Waste Management (KYT2010).


Author(s):  
Ed Rodwell ◽  
Albert Machiels

There has been a resurgence of interest in the possibility of processing the US spent nuclear fuel, instead of burying it in a geologic repository. Accordingly, key topical findings from three relevant EPRI evaluations made in the 1990–1995 timeframe are recapped and updated to accommodate a few developments over the subsequent ten years. Views recently expressed by other US entities are discussed. Processing aspects thereby addressed include effects on waste disposal and on geologic repository capacity, impacts on the economics of the nuclear fuel cycle and of the overall nuclear power scenario, alternative dispositions of the plutonium separated by the processing, impacts on the structure of the perceived weapons proliferation risk, and challenges for the immediate future and for the current half-century. Currently, there is a statutory limit of 70,000 metric tons on the amount of nuclear waste materials that can be accepted at Yucca Mountain. The Environmental Impact Statement (EIS) for the project analyzed emplacement of up to 120,000 metric tons of nuclear waste products in the repository. Additional scientific analyses suggest significantly higher capacity could be achieved with changes in the repository configuration that use only geology that has already been characterized and do not deviate from existing design parameters. Conservatively assuming the repository capacity postulated in the EIS, the need date for a second repository is essentially deferrable until that determined by a potential new nuclear plant deployment program. A further increase in technical capacity of the first repository (and further and extensive delay to the need date for a second repository) is potentially achievable by processing the spent fuel to remove the plutonium (and at least the americium too), provided the plutonium and the americium are then comprehensively burnt. The burning of some of the isotopes involved would need fast reactors (discounting for now a small possibility that one of several recently postulated alternatives will prove superior overall). However, adoption of processing would carry a substantial cost burden and reliability of the few demonstration fast reactors built to-date has been poor. Trends and developments could remove these obstacles to the processing scenario, possibly before major decisions on a second repository become necessary, which need not be until mid-century at the earliest. Pending the outcomes of these long-term trends and developments, economics and reliability encourage us to stay with non-processing for the near term at least. Besides completing the Yucca Mountain program, the two biggest and inter-related fuel-cycle needs today are for a nationwide consensus on which processing technology offers the optimum mix of economic competitiveness and proliferation resistance and for a sustained effort to negotiate greater international cooperation and safeguards. Equally likely to control the readiness schedule is development/demonstration of an acceptable, reliable and affordable fast reactor.


1990 ◽  
Vol 212 ◽  
Author(s):  
Donald H. Alexander ◽  
E. Richard Hill ◽  
John L. Smoot ◽  
Dennis R. Smith ◽  
Karen Waldo ◽  
...  

ABSTRACTComputer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning.A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of information systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: 1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and 2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Lars Werme ◽  
Sergei Butorin ◽  
Peter M Oppeneer

AbstractAfter a few hundred years, the actinides will dominate the radiotoxicity of spent nuclear fuel. This does not necessarily mean that the actinides will dominate the dose to organisms at the surface above a geologic repository. Quite the contrary, in most performance assessments this dose is dominated by long-lived fission products, activation products and, in the very long perspective, actinide daughters.This makes the far-field migration properties of the actinides less interesting for further research. There are, however, other aspects of the presence of actinides in spent nuclear fuel and some of these and SKB's research in these fields is presented and discussed here.


Sign in / Sign up

Export Citation Format

Share Document