scholarly journals Plasma Wakefield Acceleration of an Intense Positron Beam

2004 ◽  
Author(s):  
B Blue
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhangli Xu ◽  
Longqing Yi ◽  
Baifei Shen ◽  
Jiancai Xu ◽  
Liangliang Ji ◽  
...  

Abstract Positron acceleration in plasma wakefield faces significant challenges, as the positron beam must be pre-generated and precisely coupled into the wakefield and, most critically, suffers from defocusing issues. Here we propose a scheme that utilizes laser-driven electrons to produce, inject, and accelerate positrons in a single setup. The high-charge electron beam from wakefield acceleration creates copious electron–positron pairs via the Bethe–Heitler process, followed by enormous coherent transition radiation due to the electrons’ exiting from the metallic foil. Simulation results show that the coherent transition radiation field reaches up to tens of GV m−1, which captures and accelerates the positrons to cut-off energy of 1.5 GeV with energy peak of 500 MeV (energy spread ~ 24.3%). An external longitudinal magnetic field of 30 T is also applied to guide the electrons and positrons during the acceleration process. This proposed method offers a promising way to obtain GeV fast positron sources.


2003 ◽  
Vol 90 (21) ◽  
Author(s):  
B. E. Blue ◽  
C. E. Clayton ◽  
C. L. O’Connell ◽  
F.-J. Decker ◽  
M. J. Hogan ◽  
...  

2016 ◽  
Vol 09 ◽  
pp. 63-83 ◽  
Author(s):  
Mark J. Hogan

Particle accelerators are the ultimate microscopes. They produce high energy beams of particles — or, in some cases, generate X-ray laser pulses — to probe the fundamental particles and forces that make up the universe and to explore the building blocks of life. But it takes huge accelerators, like the Large Hadron Collider or the two-mile-long SLAC linac, to generate beams with enough energy and resolving power. If we could achieve the same thing with accelerators just a few meters long, accelerators and particle colliders could be much smaller and cheaper. Since the first theoretical work in the early 1980s, an exciting series of experiments have aimed at accelerating electrons and positrons to high energies in a much shorter distance by having them “surf” on waves of hot, ionized gas like that found in fluorescent light tubes. Electron-beam-driven experiments have measured the integrated and dynamic aspects of plasma focusing, the bright flux of high energy betatron radiation photons, particle beam refraction at the plasma–neutral-gas interface, and the structure and amplitude of the accelerating wakefield. Gradients spanning kT/m to MT/m for focusing and 100[Formula: see text]MeV/m to 50[Formula: see text]GeV/m for acceleration have been excited in meter-long plasmas with densities of 10[Formula: see text]–10[Formula: see text][Formula: see text]cm[Formula: see text], respectively. Positron-beam-driven experiments have evidenced the more complex dynamic and integrated plasma focusing, 100[Formula: see text]MeV/m to 5[Formula: see text]GeV/m acceleration in linear and nonlinear plasma waves, and explored the dynamics of hollow channel plasma structures. Strongly beam-loaded plasma waves have accelerated beams of electrons and positrons with hundreds of pC of charge to over 5[Formula: see text]GeV in meter scale plasmas with high efficiency and narrow energy spread. These “plasma wakefield acceleration” experiments have been mounted by a diverse group of accelerator, laser and plasma researchers from national laboratories and universities around the world. This article reviews the basic principles of plasma wakefield acceleration with electron and positron beams, the current state of understanding, the push for first applications and the long range R&D roadmap toward a high energy collider.


2001 ◽  
Vol 64 (4) ◽  
Author(s):  
S. Lee ◽  
T. Katsouleas ◽  
R. G. Hemker ◽  
E. S. Dodd ◽  
W. B. Mori

2006 ◽  
Author(s):  
X. Wang ◽  
R. Ischebeck ◽  
C. Joshi ◽  
P. Muggli ◽  
T. Katsouleas

2021 ◽  
Vol 9 ◽  
Author(s):  
M. Turner ◽  
A. J. Gonsalves ◽  
S. S. Bulanov ◽  
C. Benedetti ◽  
N. A. Bobrova ◽  
...  

Abstract We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 $\mathrm{\mu} \mathrm{m}$ to 2 mm and lengths of 9 to 40 cm. To the best of the authors’ knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for $\ge$ 10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to $<0.2$ % and their average on-axis plasma electron density to $<1$ %. These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.


2007 ◽  
Vol 22 (23) ◽  
pp. 4265-4269
Author(s):  
MITSURU UESAKA ◽  
ANDREA ROSSI

We categorized 16 contributions into the three sub-fields. Those are 1. Compton scattering X-ray sources, 2. FEL and RF photoinjectors and 3. Plasma wakefield acceleration/innovative acceleration schemes. We performed a half day working group for each sub-field. The titles and summaries of the contributions appear in the article.


Sign in / Sign up

Export Citation Format

Share Document