scholarly journals Genetic Inventory of Bull Trout and Westslope Cutthroat Trout in Pend Oreille Subbasin, 2003-2004 Annual Report.

2004 ◽  
Author(s):  
Jason Olson ◽  
Joseph R. Maroney ◽  
Todd Andersen
Author(s):  
Kadie B. Heinle ◽  
Lisa A. Eby ◽  
Clint C. Muhlfeld ◽  
Amber C. Steed ◽  
Leslie A. Jones ◽  
...  

Climate warming is expected to have substantial impacts on native trout across the Rocky Mountains, but there is little understanding of how these changes affect future distributions of co-occurring native fishes within population strongholds. We used mixed-effects logistic regression to investigate the role of abiotic (e.g., temperature) and biotic factors (Bull Trout presence, Salvelinus confluentus) on distributions of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi; WCT) in the North Fork Flathead River, USA and Canada. The probability of WCT presence increased with stream temperature and decreased with channel gradient and Bull Trout presence, yet the effect of Bull Trout was reduced with increasing pool densities. Combining this model with spatially-explicit stream temperature projections, we predict a 29% increase in suitable habitat under high emissions through 2075, with gains at mid-elevation sites predicted to exceed Bull Trout thermal tolerances and high-elevation sites expected to become more thermally suitable for WCT. Our study illustrates the importance of considering abiotic and biotic drivers to assess species response to climate change, helping to guide local scale climate adaptation and management.


2014 ◽  
Vol 71 (2) ◽  
pp. 189-202 ◽  
Author(s):  
Ryan J. MacDonald ◽  
Sarah Boon ◽  
James M. Byrne ◽  
Mike D. Robinson ◽  
Joseph B. Rasmussen

Native salmonids of western North America are subject to many environmental pressures, most notably the effects of introduced species and environmental degradation. To better understand how native salmonids on the eastern slopes of the Canadian Rocky Mountains may respond to future changes in climate, we applied a process-based approach to hydrologic and stream temperature modelling. This study demonstrates that stream thermal regimes in western Alberta, Canada, may only warm during the summer period, while colder thermal regimes during spring, fall, and winter could result from response to earlier onset of spring freshet. Model results of future climate impacts on hydrology and stream temperature are corroborated by an intercatchment comparison of stream temperature, air temperature, and hydrological conditions. Earlier fry emergence as a result of altered hydrological and thermal regimes may favour native westslope cutthroat trout (Oncorhynchus clarkii lewisii) in isolated headwater streams. Colder winter stream temperatures could result in longer incubation periods for native bull trout (Salvelinus confluentus) and limit threatened westslope cutthroat trout habitat.


Sign in / Sign up

Export Citation Format

Share Document