Influence of water temperature and biotic interactions on the distribution of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) in a population stronghold under climate change

Author(s):  
Kadie B. Heinle ◽  
Lisa A. Eby ◽  
Clint C. Muhlfeld ◽  
Amber C. Steed ◽  
Leslie A. Jones ◽  
...  

Climate warming is expected to have substantial impacts on native trout across the Rocky Mountains, but there is little understanding of how these changes affect future distributions of co-occurring native fishes within population strongholds. We used mixed-effects logistic regression to investigate the role of abiotic (e.g., temperature) and biotic factors (Bull Trout presence, Salvelinus confluentus) on distributions of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi; WCT) in the North Fork Flathead River, USA and Canada. The probability of WCT presence increased with stream temperature and decreased with channel gradient and Bull Trout presence, yet the effect of Bull Trout was reduced with increasing pool densities. Combining this model with spatially-explicit stream temperature projections, we predict a 29% increase in suitable habitat under high emissions through 2075, with gains at mid-elevation sites predicted to exceed Bull Trout thermal tolerances and high-elevation sites expected to become more thermally suitable for WCT. Our study illustrates the importance of considering abiotic and biotic drivers to assess species response to climate change, helping to guide local scale climate adaptation and management.

2014 ◽  
Vol 71 (2) ◽  
pp. 189-202 ◽  
Author(s):  
Ryan J. MacDonald ◽  
Sarah Boon ◽  
James M. Byrne ◽  
Mike D. Robinson ◽  
Joseph B. Rasmussen

Native salmonids of western North America are subject to many environmental pressures, most notably the effects of introduced species and environmental degradation. To better understand how native salmonids on the eastern slopes of the Canadian Rocky Mountains may respond to future changes in climate, we applied a process-based approach to hydrologic and stream temperature modelling. This study demonstrates that stream thermal regimes in western Alberta, Canada, may only warm during the summer period, while colder thermal regimes during spring, fall, and winter could result from response to earlier onset of spring freshet. Model results of future climate impacts on hydrology and stream temperature are corroborated by an intercatchment comparison of stream temperature, air temperature, and hydrological conditions. Earlier fry emergence as a result of altered hydrological and thermal regimes may favour native westslope cutthroat trout (Oncorhynchus clarkii lewisii) in isolated headwater streams. Colder winter stream temperatures could result in longer incubation periods for native bull trout (Salvelinus confluentus) and limit threatened westslope cutthroat trout habitat.


2010 ◽  
Vol 67 (2) ◽  
pp. 371-385 ◽  
Author(s):  
Amy R. Jenkins ◽  
Ernest R. Keeley

We used a bioenergetic model to determine if cutthroat trout ( Oncorhynchus clarkii bouvieri ) abundance was related to net energy intake rates (NEI) and the proportion of suitable habitat and to evaluate potential changes in habitat quality due to climate change and stream fertilization efforts. We conducted monthly sampling of cutthroat trout, invertebrate drift, and physical habitat features in pool and riffle habitats. Fish in this study selected foraging positions that enabled them to maximize NEI, and most fish were capable of sustaining high growth rates from July to September. Mean NEI and the proportion of suitable habitat at sites were greater in pools relative to riffle habitats and declined from July to October, primarily due to a decline in temperature over the four months. Cutthroat trout biomass was significantly related to NEI and the proportion of suitable habitat at a site. Model simulations indicated that climate change might reduce habitat quality for small-bodied trout, while extending the growing season for larger fish. Increased food abundance provided only marginal changes to model outcomes, whereas reductions in food significantly reduced habitat quality.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 990
Author(s):  
Tariq M. Munir ◽  
Cherie J. Westbrook

Beaver dam analogues (BDAs) are becoming an increasingly popular stream restoration technique. One ecological function BDAs might help restore is suitable habitat conditions for fish in streams where loss of beaver dams and channel incision has led to their decline. A critical physical characteristic for fish is stream temperature. We examined the thermal regime of a spring-fed Canadian Rocky Mountain stream in relation to different numbers of BDAs installed in series over three study periods (April–October; 2017–2019). While all BDA configurations significantly influenced stream and pond temperatures, single- and double-configuration BDAs incrementally increased stream temperatures. Single and double configuration BDAs warmed the downstream waters of mean maxima of 9.9, 9.3 °C by respective mean maxima of 0.9 and 1.0 °C. Higher pond and stream temperatures occurred when ponding and discharge decreased, and vice versa. In 2019, variation in stream temperature below double-configuration BDAs was lower than the single-configuration BDA. The triple-configuration BDA, in contrast, cooled the stream, although the mean maximum stream temperature was the highest below these structures. Ponding upstream of BDAs increased discharge and resulted in cooling of the stream. Rainfall events sharply and transiently reduced stream temperatures, leading to a three-way interaction between BDA configuration, rainfall and stream discharge as factors co-influencing the stream temperature regime. Our results have implications for optimal growth of regionally important and threatened bull and cutthroat trout fish species.


Author(s):  
Camille J. Macnaughton ◽  
Travis C. Durhack ◽  
Neil J. Mochnacz ◽  
Eva C. Enders

The physiology and behaviour of fish are strongly affected by ambient water temperature. Physiological traits related to metabolism, such as aerobic scope (AS), can be measured across temperature gradients and the resulting performance curve reflects the thermal niche that fish can occupy. We measured AS of Westslope Cutthroat Trout (Oncorhynchus clarkii lewisi) at 5, 10, 15, 20, and 22°C and compared temperature preference (Tpref) of the species to non-native Brook Trout, Brown Trout, and Rainbow Trout. Intermittent-flow respirometry experiments demonstrated that metabolic performance of Westslope Cutthroat Trout was optimal at ~15 °C and decreased substantially beyond this temperature, until lethal temperatures at ~25 °C. Adjusted preferred temperatures across species (Tpref) were comparatively high, ranging from 17.8-19.9 °C, with the highest Tpref observed for Westslope Cutthroat Trout. Results suggest that although Westslope Cutthroat Trout is considered a cold-water species, they do not prefer or perform as well in cold water (≤ 10°C), thus, can occupy a warmer thermal niche than previously thought. The metabolic performance curve (AS) can be used to develop species‐specific thermal criteria to delineate important thermal habitats and guide conservation and recovery actions for Westslope Cutthroat Trout.


Author(s):  
Robert Al-Chokhachy ◽  
Mike Lien ◽  
Bradley B. Shepard ◽  
Brett High

Climate change and non-native species are considered two of the biggest threats to native salmonids in North America. We evaluated how non-native salmonids and stream temperature and discharge were associated with Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) distribution, abundance, and body size, to gain a more complete understanding of the existing threats to native populations. Allopatric Yellowstone cutthroat trout were distributed across a wide range of average August temperatures (3.2 to 17.7ºC), but occurrence significantly declined at colder temperatures (<10 ºC) with increasing numbers of non-natives. At warmer temperatures occurrence remained high, despite sympatry with non-natives. Yellowstone cutthroat trout relative abundance was significantly reduced with increasing abundance of non-natives, with the greatest impacts at colder temperatures. Body sizes of large Yellowstone cutthroat trout (90th percentile) significantly increased with warming temperatures and larger stream size, highlighting the importance of access to these more productive stream segments. Considering multiple population-level attributes demonstrates the complexities of how native salmonids (such as Yellowstone cutthroat trout) are likely to be affected by shifting climates.


<em>Abstract</em>.—There has been considerable interest in the systematics and classification of Cutthroat Trout since the 1800s. Cutthroat Trout native to western North America (currently classified as <em>Oncorhynchus clarkii</em>) have historically been grouped or separated using many different classification schemes. Since the 1960s, Robert Behnke has been a leader in these efforts. Introductions of nonnative trout (other forms of Cutthroat Trout, and Rainbow Trout <em>O. mykiss</em>) have obscured some historical patterns of distribution and differentiation. Morphological and meristic analyses have often grouped the various forms of Cutthroat Trout together based on the shared presence of the “cutthroat mark,” high scale counts along the lateral line, and the presence of basibranchial teeth. Spotting patterns and counts of gill rakers and pyloric caeca have in some cases been helpful in differentiation of groups (e.g., Coastal Cutthroat Trout <em>O. c. clarkii</em>, Lahontan Cutthroat Trout <em>O. c. henshawi</em>, and Westslope Cutthroat Trout <em>O. c. lewisi</em>) currently classified as subspecies. The historical genetic methods of allozyme genotyping through protein electrophoresis and chromosome analyses were often helpful in differentiating the various subspecies of Cutthroat Trout. Allozyme genotyping allowed four major groups to be readily recognized (Coastal Cutthroat Trout, Westslope Cutthroat Trout, the Lahontan Cutthroat Trout subspecies complex, and Yellowstone Cutthroat Trout <em>O. c. bouvieri </em>subspecies complex) while chromosome analyses showed similarity between the Lahontan and Yellowstone Cutthroat trout subspecies complex trout (possibly reflecting shared ancestral type) and differentiated the Coastal and Westslope Cutthroat trouts from each other and those two groups. DNA results may yield higher resolution of evolutionary relationships of Cutthroat Trout and allow incorporation of ancient museum samples. Accurate resolution of taxonomic differences among various Cutthroat Trout lineages, and hybridization assessments, requires several approaches and will aid in conservation of these charismatic and increasingly rare native fishes.


2009 ◽  
Vol 66 (7) ◽  
pp. 1153-1168 ◽  
Author(s):  
Clint C. Muhlfeld ◽  
Thomas E. McMahon ◽  
Durae Belcer ◽  
Jeffrey L. Kershner

We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout ( Oncorhynchus clarkii lewisi ; WCT), introduced rainbow trout ( Oncorhynchus mykiss ; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.


2018 ◽  
Vol 75 (11) ◽  
pp. 1778-1783 ◽  
Author(s):  
Samuel L. Bourret ◽  
Niall G. Clancy

Illegal fish introductions create some of the most challenging problems for resource managers because of their potential to harm existing recreational fisheries and their impact on species of conservation concern. Determining the origin of a suspected illegal fish introduction can aid managers in preventing the colonization and subsequent ecosystem impacts of introduced species. In this study, we used forensic geochemistry via fish otoliths to investigate an illegal walleye (Sander vitreus) introduction in Swan Lake, Montana, which provides critical habitat for threatened bull trout (Salvelinus confluentus) and native westslope cutthroat trout (Oncorhynchus clarkii). Core to edge geochemical profiles of 87Sr/86Sr and Sr/Ca ratios in the walleye otoliths revealed that these fish had been introduced to Swan Lake within the past growing season, and their geochemical signature matched that of walleye sampled from Lake Helena, Montana, located 309 road kilometres away. This research highlights application of a tool fisheries managers can use to identify the natal waterbody source of illegally introduced fish.


Sign in / Sign up

Export Citation Format

Share Document