scholarly journals Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

2006 ◽  
Author(s):  
R.T., III Primm ◽  
R.J. Ellis ◽  
J.C. Gehin ◽  
D.L. Moses ◽  
J.L. Binder ◽  
...  
2014 ◽  
Vol 1070-1072 ◽  
pp. 357-360
Author(s):  
Dao Xiang Shen ◽  
Yao Li Zhang ◽  
Qi Xun Guo

A travelling wave reactor (TWR) is an advanced nuclear reactor which is capable of running for decades given only depleted uranium fuel, it is considered one of the most promising solutions for nonproliferation. A preliminary core design was proposed in this paper. The calculation was performed by Monte Carlo method. The burning mechanism of the reactor core design was studied. Optimization on the ignition zone was performed to reduce the amount of enriched uranium initially deployed. The results showed that the preliminary core design was feasible. The optimization analysis showed that the amount of enriched uranium could be reduced under rational design.


Author(s):  
Hakan Ozaltun ◽  
Robert M. Allen ◽  
You Sung Han

The effects of the thickness of Zirconium liner on stress-strain behavior of monolithic fuel mini-plates during fabrication and irradiation processes were studied. Monolithic plate-type fuel elements is a new fuel form being developed for research and test reactors to achieve higher uranium densities which allows the use of low-enriched uranium fuel in reactor core. These fuel elements are comprised of a high density, low enrichment, U–Mo alloy based fuel foil encapsulated in a cladding material made of Aluminum. Early RERTR experiments indicated that the presence of an interaction layer between the fuel and cladding materials causes mechanical problems. To minimize the fuel/cladding interaction, employing a diffusion barrier between the cladding and the fuel materials was proposed. Current monolithic plate design employs a 0.025 mm thick, 99.8% pure annealed Zirconium diffusion barrier between the fuel foil (U10Mo) and the cladding materials (AL6061-O). To benchmark the irradiation performance, a number of plates were irradiated in the Advanced Test Reactor (ATR) with promising irradiation performance. To understand the effects of the thickness of the Zirconium diffusion barrier on the stress-strain behavior of the plates during fabrication, irradiation and shutdown stages, a representative plate from RERTR-12 experiments (Plate L1P7A0) was selected and simulated. Both fabrication and irradiation stages were considered. Simulations were repeated for various Zirconium thicknesses to understand the effects of the thickness of the diffusion barrier. Results of fabrication simulations indicated that Zirconium thickness has noticeable effects on foil’s stresses. Irradiation simulations revealed that the fabrication stresses of the foil would be relieved rapidly in the reactor. Results also showed that Zirconium thickness has little or no effects on irradiation and shutdown stresses.


2015 ◽  
Author(s):  
Isaac T. Bodey ◽  
Franklin G. Curtis ◽  
Rao V. Arimilli ◽  
Kivanc Ekici ◽  
James D. Freels

2012 ◽  
Author(s):  
David G Renfro ◽  
David Howard Cook ◽  
James D Freels ◽  
Frederick P Griffin ◽  
Germina Ilas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document