scholarly journals Elevated Temperature Sensors for On-Line Critical Equipment Health Monitoring

2003 ◽  
Author(s):  
James Sebastian
Author(s):  
Tuncay Kamas ◽  
Banibrata Poddar ◽  
Bin Lin ◽  
Lingyu Yu ◽  
Victor Giurgiutiu

The thermal effects at elevated temperatures mostly exist for pressure vessel and pipe (PVP) applications. The technologies for diagnosis and prognosis of PVP systems need to take the thermal effect into account and compensate it on sensing and monitoring of PVP structures. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in-situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. However, the dynamic characteristics of PWAS need to be explored prior its installation for in-situ SHM. Electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS and as a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. Another SHM technology utilizing PWAS is guided wave propagation (GWP) as a far-field transient sensing technique by transducing the traveling guided ultrasonic waves (GUW) into substrate structure. The paper first presents EMIS method that qualifies and quantifies circular PWAS resonators under traction-free boundary condition and in an ambience with increasing temperature. The piezoelectric material degradation was investigated by introducing the temperature effects on the material parameters that are obtained from experimental observations as well as from related work in literature. GWP technique is also presented by inclusion of the thermal effects on the substrate material. The MATLAB GUI under the name of Wave Form Revealer (WFR) was adapted for prediction of the thermal effects on coupled guided waves and dynamic structural change in the substrate material at elevated temperature. The WFR software allows for the analysis of multimodal guided waves in the structure with affected material parameters in an ambience with elevated temperature.


2017 ◽  
pp. 455-469
Author(s):  
Saad Nauman ◽  
Irina Cristian ◽  
François Boussu ◽  
Vladan Koncar

2006 ◽  
Vol 321-323 ◽  
pp. 441-444
Author(s):  
Heung Seop Eom ◽  
Sa Hoe Lim ◽  
Jae Hee Kim ◽  
Young H. Kim ◽  
Hak Joon Kim ◽  
...  

This study was aimed at developing an effective method and a system for on-line health monitoring of pipes in nuclear power plants by using ultrasonic guided waves. For this purpose we developed a multi-channel ultrasonic guided wave system for a long-range inspection of pipes and a few techniques which can effectively find defects in pipes. To validate the developed system we performed a series of experiments and analyzed the results.


2018 ◽  
Vol 103 ◽  
pp. 174-195 ◽  
Author(s):  
Roberto Rocchetta ◽  
Matteo Broggi ◽  
Quentin Huchet ◽  
Edoardo Patelli

2012 ◽  
Vol 166-169 ◽  
pp. 1370-1374
Author(s):  
Ya Xiong Liang ◽  
Xiu Li Wang ◽  
Hai Min Zhong

The health monitoring and diagnosis of the major engineering structure is increasingly extensive attention from all the community. In particular, for the complex large-span steel roof unloading process, it is important especially. The unloading process will cause the change of structure stiffness include the internal force redistribution. The real-time and on-line monitoring have been applied to Xining stadium of the stress in the process of unloading for the purpose of structural health assessment in the paper, so as to achieve the purpose of the early warning of the problems which may arise in construction process. At the same time, through the comparison of the finite element software ANSYS analogue simulation and the value of the actual, it is obtained for the quality problem of steel structure in the process of unloading.


Sign in / Sign up

Export Citation Format

Share Document