Functionalized Allenes: Generation by Sigmatropic Rearrangement and Application in Heterocyclic Chemistry

2020 ◽  
Vol 23 (27) ◽  
pp. 3040-3063 ◽  
Author(s):  
Klaus Banert

The present review article summarizes the synthesis of allenes, which bear an adjacent functional group, by [3,3]- or [2,3]-sigmatropic rearrangement of appropriate propargyl substrates. Functionalized allenes, such as allenyl isothiocyanates, isoelenocyanates, isocyanates, thiocyanates, azides, azo compounds and others, are easily available by these methods. In several cases, however, the title compounds show high reactivity, which leads to rapid intermolecular or intramolecular successive reactions. Consequently, synthesis of the allenes by sigmatropic rearrangement has to be combined with special techniques, for example, flash vacuum pyrolysis or in situ generation and trapping reactions. The high tendency of the presented functionalized allenes to undergo cyclization reactions can be utilized to prepare heterocyclic products, for instance, thiazoles, selenazoles, 1,2,3-triazoles and pyrazoles. The synthesis of functionalized 1,3-butadienes by a second sigmatropic rearrangement of the title compounds is also successful.

1974 ◽  
Vol 27 (11) ◽  
pp. 2385 ◽  
Author(s):  
RFC Brown ◽  
GL McMullen

Flash vacuum pyrolysis of 2,2-dimethyl-5-(2?-methylbenzylidene)-1,3- dioxan-4,6-dione (1) at 420-620? gives 2-naphthol in 95-100% yield. The reaction probably involves an intermediate 2- methylbenzylideneketene, which undergoes consecutive [1,5] hydrogen migration and cyclization reactions. Substituted 2-naphthols and a phenol (biphenyl-3-ol) have been synthesized in a similar way.


2017 ◽  
Author(s):  
Curt Wentrup ◽  
Horst Briehl

Flash vacuum pyrolysis (FVP) of 5-azido-1-aryltetrazoles results in triple N<sub>2</sub> elimination and formation of aryl isocyanides RNC, which rearrange in part to aroylnitriles RCN under the reaction conditions. Similar FVP of 5-azido-1-arenesulfonyltetrazoles generates a compound absorbing in the IR spectrum (77 K) at 2090 cm<sup>-1 </sup>and assigned the structure of arenesulfonyl isocyanide, ArSO<sub>2</sub>NC <b>11</b>. FVP at temperatures above 600 <sup>o</sup>C results in progressively more nitrile ArSO<sub>2</sub>CN <b>12</b>. Compound <b>11</b> also disappears on warming above -80 <sup>o</sup>C


2017 ◽  
Author(s):  
Curt Wentrup ◽  
Horst Briehl

Flash vacuum pyrolysis (FVP) of 5-azido-1-aryltetrazoles results in triple N<sub>2</sub> elimination and formation of aryl isocyanides RNC, which rearrange in part to aroylnitriles RCN under the reaction conditions. Similar FVP of 5-azido-1-arenesulfonyltetrazoles generates a compound absorbing in the IR spectrum (77 K) at 2090 cm<sup>-1 </sup>and assigned the structure of arenesulfonyl isocyanide, ArSO<sub>2</sub>NC <b>11</b>. FVP at temperatures above 600 <sup>o</sup>C results in progressively more nitrile ArSO<sub>2</sub>CN <b>12</b>. Compound <b>11</b> also disappears on warming above -80 <sup>o</sup>C


1994 ◽  
Vol 47 (6) ◽  
pp. 991 ◽  
Author(s):  
RFC Brown ◽  
FW Eastwood ◽  
GD Fallon ◽  
SC Lee ◽  
RP Mcgeary

Flash vacuum pyrolysis of 1-(alkyn-2′-oyl)-3-methylpyrazoles at 650°/0.03 mm forms pyrazolo[1,5-a]pyridin-5-ols, often in high yield, which may bear substituents at C2, C3 or C7. In the absence of a 3-methyl group in the precursor, N-ethynylpyrazoles are formed in low yield. The formation of both types of product is interpreted as involving 3-(N-pyrazolyl)propadienones formed by N1 → N2 migration of the N-alkynoyl group with inversion of the three-carbon chain. The fused-ring structure of 2-methylpyrazolo[1,5-a]pyridin-5-ol (25) was established by X-ray crystallography of the O-benzoyl derivative (27).


1978 ◽  
Vol 19 (46) ◽  
pp. 4569-4572 ◽  
Author(s):  
Peter Schiess ◽  
Markus Heitzmann ◽  
Suzanne Rutschmann ◽  
René Stäheli

1987 ◽  
Vol 52 (12) ◽  
pp. 2474-2481 ◽  
Author(s):  
Kay Ann Campbell ◽  
Herbert O. House ◽  
Bruce W. Surber ◽  
Walter S. Trahanovsky

Sign in / Sign up

Export Citation Format

Share Document