Boron in Medicinal and Organic Chemistry

2021 ◽  
Vol 25 ◽  
Author(s):  
João Lucas Bruno Prates ◽  
Aline Renata Pavan ◽  
Jean Leandro dos Santos

: Nowadays, boron-containing compounds have gained researchers’ attention because of the wide versatility and applicability of this element in both organic and medicinal chemistry. Since its discovery, its use in medicinal chemistry was neglected due to its possible toxic effects. However, in the past years, boron-containing compounds did not show such effects, and some drugs have already been approved by the Food and Drug Administration to treat diseases, including cancer, infections, and inflammation. Several boron-containing compounds are used in organic and medicinal chemistry, either as a reagent or therapeutic agent. The chemical properties of this element make its use possible in organic synthesis as a reducing agent and catalyst, mainly in cross-coupling reactions. Among boron-containing compounds, boranes, azaborines, benzoxaborole, boronic acid, and boron derivatives are most commonly described. This review article discusses the main properties of boron-containing compounds, their preparation by organic synthesis, as well as their applications in organic synthesis and medicinal chemistry fields, developing new perspectives for further investigations.

2019 ◽  
Author(s):  
Victor Bloemendal ◽  
Floris P. J. T. Rutjes ◽  
Thomas J. Boltje ◽  
Daan Sondag ◽  
Hidde Elferink ◽  
...  

<p>In this manuscript we describe a modular pathway to synthesize biologically relevant (–)-<i>trans</i>-Δ<sup>8</sup>-THC derivatives, which can be used to modulate the pharmacologically important CB<sub>1</sub> and CB<sub>2</sub> receptors. This pathway involves a one-pot Friedel-Crafts alkylation/cyclization protocol, followed by Suzuki-Miyaura cross-coupling reactions and gives rise to a series of new Δ<sup>8</sup>-THC derivatives. In addition, we demonstrate using extensive NMR evidence that similar halide-substituted Friedel-Crafts alkylation/cyclization products in previous articles were wrongly assigned as the para-isomers, which also has consequence for the assignment of the subsequent cross-coupled products and interpretation of their biological activity. </p> <p>Considering the importance of the availability of THC derivatives in medicinal chemistry research and the fact that previously synthesized compounds were wrongly assigned, we feel this research is describing a straightforward pathway into new cannabinoids.</p>


Compounds ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 58-74
Author(s):  
Emmanuel Aubert ◽  
Emmanuel Wenger ◽  
Paola Peluso ◽  
Victor Mamane

Non-symmetrical chiral 4,4′-bipyridines have recently found interest in organocatalysis and medicinal chemistry. In this regard, the development of efficient methods for their synthesis is highly desirable. Herein, a series of non-symmetrical atropisomeric polyhalogenated 4,4′-bipyridines were prepared and further functionalized by using cross-coupling reactions. The desymmetrization step is based on the N-oxidation of one of the two pyridine rings of the 4,4′-bipyridine skeleton. The main advantage of this methodology is the possible post-functionalization of the pyridine N-oxide, allowing selective introduction of chlorine, bromine or cyano groups in 2- and 2′-postions of the chiral atropisomeric 4,4′-bipyridines. The crystal packing in the solid state of some newly prepared derivatives was analyzed and revealed the importance of halogen bonds in intermolecular interactions.


Synthesis ◽  
2021 ◽  
Author(s):  
Felipe C. Demidoff ◽  
Leandro L. de Carvalho ◽  
Eduardo José P. Rodrigues Filho ◽  
Andréa Luzia F. de Souza ◽  
Chaquip D. Netto

AbstractFunctionalized 1,4-naphthoquinones have been employed as versatile synthons in organic synthesis, in addition to presenting a large array of biological activities. Herein, the applications of 2-amino-/ acetylamino-substituted 3-iodo-1,4-naphthoquinones in cross-coupling reactions are described to successfully afford sixteen novel 3-styryl-1,4-naphthoquinones (amino-stilbene-quinone hybrids) and four 3-alkynyl-1,4-naphthoquinone in overall good yields. Interestingly, the alkynylated derivatives could be obtained from ligand- and Pd-free CuI-mediated cross-coupling reactions, after extensive investigations to exclude Pd as a co-catalyst. Lastly, the desilanized terminal alkyne was subjected to click chemistry reactions to give two novel triazole-1,4-naphthoquinone hybrids.


Synthesis ◽  
2020 ◽  
Vol 52 (23) ◽  
pp. 3511-3529 ◽  
Author(s):  
Peter Koóš ◽  
Martin Markovič ◽  
Pavol Lopatka ◽  
Tibor Gracza

Considerable advances have been made using continuous flow chemistry as an enabling tool in organic synthesis. Consequently, the number of articles reporting continuous flow methods has increased significantly in recent years. This review covers the progress achieved in homogeneous palladium catalysis using continuous flow conditions over the last five years, including C–C/C–N cross-coupling reactions, carbonylations and reductive/oxidative transformations.1 Introduction2 C–C Cross-Coupling Reactions3 C–N Coupling Reactions4 Carbonylation Reactions5 Miscellaneous Reactions6 Key to Schematic Symbols7 Conclusion


2008 ◽  
Vol 80 (3) ◽  
pp. 621-637 ◽  
Author(s):  
Rik R. Tykwinski ◽  
Mojtaba Gholami ◽  
Sara Eisler ◽  
Yuming Zhao ◽  
Frederic Melin ◽  
...  

During the past two decades, shape-persistent conjugated macrocycles with a broad spectrum of attributes and topologies have been synthesized. This includes macrocycles with remarkable electronic, optical, and supramolecular properties, as well as intriguing frameworks. Expanded radialenes are a class of conjugated shape-persistent macrocycles that arise from the formal insertion of acetylene units into a radialene framework. A related class of macrocycles, the expanded radiaannulenes, contains both endo- and exocyclic vinylene and vinylidene segments, respectively, and accordingly exhibits properties intermediate between radialenes and annulenes. Enyne building blocks have been developed that are suitable for forming a macrocyclic framework through a step-wise sequence of Pd-catalyzed cross-coupling reactions. This "building-block" approach allows us to explore a range of molecular architectures that will ultimately provide for an understanding of π-delocalization in these compounds. The synthesis and structural characterization of the first members of this new class of expanded radialenes and radiaannulenes are described.


Sign in / Sign up

Export Citation Format

Share Document