Cyclopropyl Building Blocks for Organic Synthesis. Part 97. Convenient Route to 2-(Trialkylstannyl)cyclopropylamines and Their Application in Palladium-Catalyzed Cross-Coupling Reactions.

ChemInform ◽  
2004 ◽  
Vol 35 (22) ◽  
Author(s):  
Stefan Wiedemann ◽  
Karsten Rauch ◽  
Andrei Savchenko ◽  
Ilan Marek ◽  
Armin de Meijere
2019 ◽  
Vol 15 ◽  
pp. 1416-1424
Author(s):  
Ruben Pomar Fuentespina ◽  
José Angel Garcia de la Cruz ◽  
Gabriel Durin ◽  
Victor Mamane ◽  
Jean-Marc Weibel ◽  
...  

1,3-Enynes are important building blocks in organic synthesis and also constitute the key motif in various bioactive natural products and functional materials. However, synthetic approaches to stereodefined substituted 1,3-enynes remain a challenge, as they are limited to Wittig and cross-coupling reactions. Herein, stereodefined 1,3-enynes, including tetrasubstituted ones, were straightforwardly synthesized from cis or trans-alkynylated oxiranes in good to excellent yields by a one-pot cascade process. The procedure relies on oxirane deprotonation, borylation and a stereospecific rearrangement of the so-formed alkynyloxiranyl borates. This stereospecific process overall transfers the cis or trans-stereochemistry of the starting alkynyloxiranes to the resulting 1,3-enynes.


2020 ◽  
Vol 16 (8) ◽  
pp. 1105-1142 ◽  
Author(s):  
Shalu Sain ◽  
Sonika Jain ◽  
Manish Srivastava ◽  
Rajendra Vishwakarma ◽  
Jaya Dwivedi

: Palladium-catalyzed cross-coupling reactions have gained a continuously growing interest of synthetic organic chemists. The present review gives a brief account of applications of the palladium-catalyzed cross-coupling reactions in comprehensive synthesis, viz., the Heck, Stille, Suzuki–Miyaura, Negishi, Sonogashira, Buchwald–Hartwig, Ullmann and the Oxidative, decarboxylative cross-coupling reactions, with particular emphasis on the synthesis of heterocyclic compounds.


2004 ◽  
Vol 2004 (3) ◽  
pp. 631-635 ◽  
Author(s):  
Stefan Wiedemann ◽  
Karsten Rauch ◽  
Andrei Savchenko ◽  
Ilan Marek ◽  
Armin de Meijere

2020 ◽  
Author(s):  
Vincent Debrauwer ◽  
Aneta Turlik ◽  
Lénaïc Rummler ◽  
Alessandro Prescimone ◽  
Nicolas Blanchard ◽  
...  

Ynamides are fascinating small molecules with complementary reactivities under radical, ionic and metal-catalyzed conditions. We report herein synthetic and DFT investigations of palladium-catalyzed ligand-controlled regiodivergent hydro-metallation reactions of ynamides. Germylated and stannylated enamides are obtained with excellent alpha,<i>E</i>- or beta,<i>E</i>-selectivities and a broad functional group tolerance. Such a regiodivergent palladium-catalyzed process is unique in ynamide chemistry and allows for the elaboration of metallated-enamides that are useful building blocks for cross-coupling reactions or heterocyclic chemistry. DFT calculations fully support the experimental data and demonstrate the crucial roles of the <i>trans</i>-geometry of the [H-Pd(L)-Ge] complex, as well as of the steric requirements of the phosphine ligand. In addition, the prevalence of a hydro-palladation pathway over a metal-palladation of the pi system of the ynamide was demonstrated.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 213 ◽  
Author(s):  
Lou Rocard ◽  
Piétrick Hudhomme

Palladium-catalyzed cross-coupling reactions are nowadays essential in organic synthesis for the construction of C–C, C–N, C–O, and other C-heteroatom bonds. The 2010 Nobel Prize in Chemistry to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki was awarded for the discovery of these reactions. These great advances for organic chemists stimulated intense research efforts worldwide dedicated to studying these reactions. Among them, the Suzuki–Miyaura coupling (SMC) reaction, which usually involves an organoboron reagent and an organic halide or triflate in the presence of a base and a palladium catalyst, has become, in the last few decades, one of the most popular tools for the creation of C–C bonds. In this review, we present recent progress concerning the SMC reaction with the original use of nitroarenes as electrophilic coupling partners reacting with the organoboron reagent.


2020 ◽  
Author(s):  
Vincent Debrauwer ◽  
Aneta Turlik ◽  
Lénaïc Rummler ◽  
Alessandro Prescimone ◽  
Nicolas Blanchard ◽  
...  

Ynamides are fascinating small molecules with complementary reactivities under radical, ionic and metal-catalyzed conditions. We report herein synthetic and DFT investigations of palladium-catalyzed ligand-controlled regiodivergent hydro-metallation reactions of ynamides. Germylated and stannylated enamides are obtained with excellent alpha,<i>E</i>- or beta,<i>E</i>-selectivities and a broad functional group tolerance. Such a regiodivergent palladium-catalyzed process is unique in ynamide chemistry and allows for the elaboration of metallated-enamides that are useful building blocks for cross-coupling reactions or heterocyclic chemistry. DFT calculations fully support the experimental data and demonstrate the crucial roles of the <i>trans</i>-geometry of the [H-Pd(L)-Ge] complex, as well as of the steric requirements of the phosphine ligand. In addition, the prevalence of a hydro-palladation pathway over a metal-palladation of the pi system of the ynamide was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document