Enzyme Kinetics for Clinically Relevant CYP Inhibition

2005 ◽  
Vol 6 (3) ◽  
pp. 241-257 ◽  
Author(s):  
Zhi-Yi Zhang ◽  
Y. Wong
2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Ronald Kong ◽  
Jiyuan Ma ◽  
Seongwoo Hwang ◽  
Young‐Choon Moon ◽  
Ellen M. Welch ◽  
...  

1968 ◽  
Vol 19 (03/04) ◽  
pp. 364-367 ◽  
Author(s):  
H. C Hemker ◽  
P. W Hemker

SummaryThe enzyme kinetics of competitive inhibition under conditions prevailing in clotting tests are developed and a method is given to measure relative amounts of a competitive inhibitor by means of the t — D plot.


1965 ◽  
Vol 13 (01) ◽  
pp. 155-175 ◽  
Author(s):  
H. C Hemker ◽  
P.W Hemker ◽  
E. A Loeliger

SummaryApplication of the methods of enzyme-kinetic analysis to the results of clotting tests is feasible and can yield useful results. However, the standard methods of enzyme kinetics are not applicable without modifications imposed by the peculiarities of the blood-clotting enzyme system. The influence of the following complicating circumstances is calculated :1. Substrate is not present in excess.2. Only relative measures exist for concentrations of substrate or enzymes.3. Enzymes and substrates are often added together.4. Reagents are not pure.5. Clotting-time is our only measure for clotting-velocity.Formulas are deduced, which makes it possible to recognize the effect of these complications.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1151-P
Author(s):  
LI CHEN ◽  
YONGQIANG SHAN ◽  
XIAOWEI JIN ◽  
XIAOBING LV

2019 ◽  
Author(s):  
Jacob Porter ◽  
Oscar Vivas-Rodriguez ◽  
C. David Weaver ◽  
Eamonn Dickson ◽  
Abdulmohsen Alsafran ◽  
...  

A set of novel Kv7.2/7.3 (KCNQ2/3) channel blockers was synthesized to address several liabilities of the known compounds XE991 (metabolic instability and CYP inhibition) and the clinical compound DMP 543 (acid instability, insolubility, and lipophilicity). Using the anthrone scaffold of the prior channel blockers, alternative heteroarylmethyl substituents were installed via enolate alkylation reactions. Incorporation of a pyridazine and a fluorinated pyridine gave an analog (JDP-107) with an optimal combination of potency (IC<sub>50</sub>= 0.16 𝜇M in a Kv7.2 thallium flux assay), efficacy in a Kv7.2/7.3 patch clamp assay, and drug-like properties.


Biochemistry ◽  
2004 ◽  
Vol 43 (51) ◽  
pp. 16174-16183 ◽  
Author(s):  
Marie-Josée Duran ◽  
Sandrine V. Pierre ◽  
Deborah L. Carr ◽  
Thomas A. Pressley

2021 ◽  
Vol 14 (5) ◽  
pp. 472
Author(s):  
Tyler C. Beck ◽  
Kyle R. Beck ◽  
Jordan Morningstar ◽  
Menny M. Benjamin ◽  
Russell A. Norris

Roughly 2.8% of annual hospitalizations are a result of adverse drug interactions in the United States, representing more than 245,000 hospitalizations. Drug–drug interactions commonly arise from major cytochrome P450 (CYP) inhibition. Various approaches are routinely employed in order to reduce the incidence of adverse interactions, such as altering drug dosing schemes and/or minimizing the number of drugs prescribed; however, often, a reduction in the number of medications cannot be achieved without impacting therapeutic outcomes. Nearly 80% of drugs fail in development due to pharmacokinetic issues, outlining the importance of examining cytochrome interactions during preclinical drug design. In this review, we examined the physiochemical and structural properties of small molecule inhibitors of CYPs 3A4, 2D6, 2C19, 2C9, and 1A2. Although CYP inhibitors tend to have distinct physiochemical properties and structural features, these descriptors alone are insufficient to predict major cytochrome inhibition probability and affinity. Machine learning based in silico approaches may be employed as a more robust and accurate way of predicting CYP inhibition. These various approaches are highlighted in the review.


Sign in / Sign up

Export Citation Format

Share Document