Kinetic Aspects of the Interaction of Blood Clotting Enzymes

1968 ◽  
Vol 19 (03/04) ◽  
pp. 364-367 ◽  
Author(s):  
H. C Hemker ◽  
P. W Hemker

SummaryThe enzyme kinetics of competitive inhibition under conditions prevailing in clotting tests are developed and a method is given to measure relative amounts of a competitive inhibitor by means of the t — D plot.

1994 ◽  
Vol 41 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Z Aleksandrowicz

The effects of Mg2+ and bicarbonate on the kinetics of ITP hydrolysis by soluble ATPase (F1) from human placental mitochondria were studied. Increasing amounts of Mg2+ at fixed ITP concentration, caused a marked activation of F1 followed by inhibition at higher Mg2+ concentration. The appropriate substrate for the mitochondrial F1 seems to be the MgITP complex as almost no ITP was hydrolysed in the absence of magnesium. Mg2+ behaved as a competitive inhibitor towards the MgITP complex. In this respect the human placental enzyme differ from that from other sources such as yeast, beef liver or rat liver. The linearity of the plot presenting competitive inhibition by free Mg2+ of MgITP hydrolysis (in the presence of activating bicarbonate anion) suggests that both Mg2+ and MgITP bind to the same catalytic site (Km(MgITP) = 0.46 mM, Ki(Mg) = 4 mM). When bicarbonate was absent in the ITPase assay, placental F1 exhibited apparent negative cooperativity in the presence of 5 mM Mg2+, just as it did with MgATP as a substrate under similar conditions. Bicarbonate ions eliminated the negative cooperativity with respect to ITP (as the Hill coefficient of 0.46 was brought to approx. 1), and thus limited inhibition by free Mg2+. The results presented suggest that the concentration of free magnesium ions may be an important regulatory factor of the human placental F1 activity.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 346-363 ◽  
Author(s):  
H. C Hemker ◽  
J. J Veltkamp ◽  
E. A Loeliger

SummaryApplication of enzyme kinetics to the results of thrombotest estimations in correlation with specific clotting factor estimations has led to the recognition of a protein moiety that occurs in plasma in vitamin K deficiency and acts as a competitive inhibitor of thrombin formation. A hypothesis is given by which the occurrence of this inhibitor is explained in terms of a biphasic synthesis of the vitamin K-dependent clotting factors.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2725 ◽  
Author(s):  
Chang Kim ◽  
Sang Noh ◽  
Yujin Park ◽  
Dongwan Kang ◽  
Pusoon Chun ◽  
...  

In this study, we designed and synthesized eight thiophene chalcone derivatives (1a–h) as tyrosinase inhibitors and evaluated their mushroom tyrosinase inhibitory activities. Of these eight compounds, (E)-3-(2,4-dihydroxyphenyl)-1-(thiophen-2-yl)prop-2-en-1-one (1c) showed strong competitive inhibition activity against mushroom tyrosinase with IC50 values of 0.013 μM for tyrosine hydroxylase and 0.93 μM for dopa oxidase. In addition, we used enzyme kinetics study and docking program to further evaluate the inhibitory mechanism of 1c toward tyrosinase. As an underlying mechanism of 1c mediated anti-melanogenic effect, we investigated the inhibitory activity against melanin contents and cellular tyrosinase in B16F10 melanoma cells. As the results, the enzyme kinetics and docking results supports that 1c highly interacts with tyrosinase residues in the tyrosinase active site and it can directly inhibit tyrosinase as competitive inhibitor. In addition, 1c exhibited dose-dependent inhibitory effects in melanin contents and intracellular tyrosinase on α-MSH and IBMX-induced B16F10 cells. Overall, our results suggested that 1c might be considered potent tyrosinase inhibitor for use in the development of therapeutic agents for diseases associated with hyperpigment disorders.


1966 ◽  
Vol 16 (01/02) ◽  
pp. 277-295 ◽  
Author(s):  
A Silver ◽  
M Murray

SummaryVarious investigators have separated the coagulation products formed when fibrinogen is clotted with thrombin and identified fibrinopeptides A and B. Two other peaks are observed in the chromatogram of the products of coagulation, but these have mostly been dismissed by other workers. They have been identified by us as amino acids, smaller peptides and amorphous material (37). We have re-chromatographed these peaks and identified several amino acids. In a closed system of fibrinogen and thrombin, the only reaction products should be fibrin and peptide A and peptide B. This reasoning has come about because thrombin has been reported to be specific for the glycyl-arginyl peptide bond. It is suggested that thrombin also breaks other peptide linkages and the Peptide A and Peptide B are attacked by thrombin to yield proteolytic products. Thrombin is therefore probably not specific for the glycyl-arginyl bond but will react on other linkages as well.If the aforementioned is correct then the fibrinopeptides A and B would cause an inhibition with the coagulation mechanism itself. We have shown that an inhibition does occur. We suggest that there is an autoinhibition to the clotting mechanism that might be a control mechanism in the human body.The experiment was designed for coagulation to occur under controlled conditions of temperature and time. Purified reactants were used. We assembled an apparatus to record visually the speed of the initial reaction, the rate of the reaction, and the density of the final clot formed after a specific time.The figures we derived made available to us data whereby we could calculate and plot the information to show the mechanism and suggest that such an inhibition does exist and also further suggest that it might be competitive.In order to prove true competitive inhibition it is necessary to fulfill the criteria of the Lineweaver-Burk plot. This has been done. We have also satisfied other criteria of Dixon (29) and Bergman (31) that suggest true competitive inhibition.


1965 ◽  
Vol 13 (01) ◽  
pp. 155-175 ◽  
Author(s):  
H. C Hemker ◽  
P.W Hemker ◽  
E. A Loeliger

SummaryApplication of the methods of enzyme-kinetic analysis to the results of clotting tests is feasible and can yield useful results. However, the standard methods of enzyme kinetics are not applicable without modifications imposed by the peculiarities of the blood-clotting enzyme system. The influence of the following complicating circumstances is calculated :1. Substrate is not present in excess.2. Only relative measures exist for concentrations of substrate or enzymes.3. Enzymes and substrates are often added together.4. Reagents are not pure.5. Clotting-time is our only measure for clotting-velocity.Formulas are deduced, which makes it possible to recognize the effect of these complications.


1989 ◽  
Vol 264 (2) ◽  
pp. 409-418 ◽  
Author(s):  
R C Poole ◽  
A P Halestrap ◽  
S J Price ◽  
A J Levi

1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.


Sign in / Sign up

Export Citation Format

Share Document