The Oxolane Ring Opening of Some Muramic Acid Derivatives Under Acidic Conditions

2018 ◽  
Vol 15 (8) ◽  
pp. 693-697
Author(s):  
Justyna Samaszko-Fiertek ◽  
Barbara Dmochowska ◽  
Rafał Slusarz ◽  
Janusz Madaj
Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4265
Author(s):  
Victor Carramiñana ◽  
Ana M. Ochoa de Ochoa de Retana ◽  
Francisco Palacios ◽  
Jesús M. de los de los Santos

Several phosphorus-substituted N-acylated cyanoaziridines 2 and N-carbamoylated cyanoziridines 5 were prepared in good to high yields. N-Acylated cyanoaziridines 2 were used, after ring expansion, in an efficient synthesis of oxazoline derivative 3a and in a completely regio-controlled reaction in the presence of NaI. Conversely, N-carbamoyl cyanoaziridines 5 reacted with NaI to obtain a regioisomeric mixture of 2-aminocyanooxazolines 7. Mild acidic conditions can be used for the isomerization of N-thiocarbamoyl cyanoaziridine 6a into a 2-aminocyanothiazoline derivative 8a by using BF3·OEt2 as a Lewis acid. Likewise, a one pot reaction of NH-cyanoaziridines 1 with isocyanates obtained 2-iminocyanooxazolidines 9 regioselectively. This synthetic methodology involves the addition of isocyanates to starting cyanoaziridines to obtain N-carbamoyl cyanoaziridines 5, which after the ring opening, reacts with a second equivalent of isocyanate to give the final 2-imino cyanooxazolidines 9. In addition, the cytotoxic effect on the cell lines derived from human lung adenocarcinoma (A549) was also screened. 2-Iminooxazolidines 9 exhibited moderate activity against the A549 cell line in vitro. Furthermore, a selectivity towards cancer cells (A549) over non-malignant cells (MCR-5) was detected.


2010 ◽  
Vol 6 ◽  
pp. 1127-1131 ◽  
Author(s):  
Jens Frigell ◽  
Ian Cumpstey

Using an indirect method, we have synthesised α-linked carbasugar analogues of galactofuranosides for the first time. Ring opening of a β-talo configured carbasugar 1,2-epoxide by alcohol nucleophiles under Lewis acidic conditions proceeded with very good regioselectivity to give α-talo configured C1-substituted ethers with a free OH-group at the C2 position. Inversion of configuration at C2 by an oxidation–reduction sequence gave the α-galacto configured carbahexofuranose C1 ethers. A carbadisaccharide corresponding to the Galf(α1→3)Manp substructure from Apodus deciduus galactomannan was synthesised to exemplify the method.


ChemInform ◽  
2010 ◽  
Vol 22 (20) ◽  
pp. no-no
Author(s):  
M. TOMURA ◽  
N. MATSUMURA ◽  
O. MORI ◽  
H. CHIKUSA ◽  
S. KAMITANI ◽  
...  

2017 ◽  
Vol 41 (12) ◽  
pp. 4797-4801 ◽  
Author(s):  
Qiong Yu ◽  
Guangbin Cheng ◽  
Xuehai Ju ◽  
Chunxu Lu ◽  
Hongwei Yang

Ring-opening reaction: owing to the instability of the 1,2,4-oxadiazole ring under acidic conditions, unexpected compounds 2 and 3 were obtained. Compound 2 exhibits an oxygen balance of zero, density of 1.89 g cm−1 and detonation velocity of 9307 m s−1 as well as impact sensitivity of 20 J.


2021 ◽  
Author(s):  
John Feist ◽  
Daniel Lee ◽  
Yan Xia

Abstract Norbornene derivatives (NBEs) are the most common monomers for ring-opening metathesis polymerization (ROMP) because they undergo living polymerization, yielding polymers with low dispersities and diverse functionalities. However, the all-carbon backbone of polyNBEs cannot be degraded. Polymer degradation is highly desired for many applications and has been a major limitation in ROMP chemistry. Here, we report a simple yet powerful method to synthesize controlled, degradable polymers by copolymerizing 2,3-dihydrofuran (DHF) with NBEs. DHF rapidly reacts with the Grubbs catalyst to form a thermodynamically stable Ru Fischer carbene, which is the only detectable active Ru species during the copolymerization, and the addition of NBEs becomes rate determining. This unique Ru Fischer carbene reactivity attenuates NBE homoaddition, which presented a significant challenge to previous copolymerization approaches, allows even incorporation of DHF units (acid-degradable enol ether bonds) throughout the copolymers, and thus enables complete polymer degradation while maintaining the favorable characteristics of living ROMP. We demonstrate the effective copolymerization of DHF with several types of NBEs to synthesize narrow-disperse polymers with tunable solubility, glass transition temperature, and mechanical properties. These polymers can all be fully degraded into small molecule or oligomeric species under mildly acidic conditions. This method can be readily adapted to traditional ROMP of widely used NBEs to synthesize new degradable polymers with tunable properties and facile degradation for various applications and environmental sustainability.


Sign in / Sign up

Export Citation Format

Share Document