ring opening reactions
Recently Published Documents


TOTAL DOCUMENTS

1410
(FIVE YEARS 123)

H-INDEX

56
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Chiwon Hwang ◽  
Jong-Ho Back ◽  
Dowon Ahn ◽  
Hyun-Jong Paik ◽  
Wonjoo Lee ◽  
...  

UV-responsive pressure-sensitive adhesives (PSAs) were achieved through the ring-opening reactions of N-carbonyl aziridine radicals.


Author(s):  
Stefanie Beck ◽  
Vanessa Rück ◽  
Lea-Viktoria Pietsch ◽  
Christoph Jessen ◽  
Andreas J. Kornath

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7399
Author(s):  
Lucilla Favero ◽  
Andrea Menichetti ◽  
Cosimo Boldrini ◽  
Lucrezia Margherita Comparini ◽  
Valeria Di Bussolo ◽  
...  

The possibility to form new C–B bonds with aziridines using diboron derivatives continues to be a particularly challenging field in view of the direct preparation of functionalized β-aminoboronates, which are important compounds in drug discovery, being a bioisostere of β-aminoacids. We now report experimental and computational data that allows the individuation of the structural requisites and of reaction conditions necessary to open alkyl aziridines using bis(pinacolate)diboron (B2pin2) in a regioselective nucleophilic addition reaction under copper catalysis.


2021 ◽  
pp. 153597
Author(s):  
Aijun Zhou ◽  
Ying Shao ◽  
Fan Chen ◽  
Peng-Cheng Qian ◽  
Jiang Cheng

2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


2021 ◽  
Author(s):  
◽  
Sarah Amy Hoyte

<p>The coordination chemistry of the cyclopropyl-substituted alkenes, bicyclopropylidene (BCP) and methylenecyclopropane (MCP), with platinum was explored. A range of complexes with ŋ²-alkene ligands were synthesised by the displacement of a ligand, typically ethene, from a precursor complex. These complexes are [Pt(L)(P—P)] (L = BCP, MCP; P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂, ᵗBu₂PCH₂(o-C₆H₄)₂PᵗBu₂), [Pt(L)(P—S)] (L = BCP, MCP; P—S = ᵗBu₂PCH₂(o-₆H4)CH₂SᵗBu), [Pt(C₂H4)(L)(PR₃)] (L = BCP, MCP; PR₃ = PPh₃, PCy₃), [Pt(MCP)₂(PR₃)] (PR₃ = PPh₃, PCy₃) and [PtCl₂(L)(L′)] (L = BCP, MCP; L′ = Py, DMSO). These were the first examples of platinum complexes with ŋ²-BCP ligands, and the first bis-MCP Pt complexes.  BCP underwent ring-opening reactions with both Pt(0) and Pt(II) complexes to form the 1,3-diene allylidenecyclopropane (ACP). The first transition metal complexes of ACP [Pt(ACP)(P—P)] (P—P = Ph₂P(CH₂)₃PPh₂, Cy₂P(CH₂)₂PCy₂, ᵗBu₂P(CH₂)₂PᵗBu₂) were synthesised. Some of these complexes rearranged to form ŋ²:σ²-metallacyclopentene complexes, the first instances of the formation of ŋ²:σ²-metallacyclopentene complexes from ŋ²:π-diene complexes. With MCP, the ring-opening reaction only occurred with [₂(COD)], as a result of the anti-Markovnikov addition of Pt–H, generated by the β-hydride elimination of an Et group, across the double-bond. The major products of this reaction were the 1-methylcyclopropyl complexes [Pt(C(CH₂)₂CH₃)Et(COD)] and [Pt(C(CH₂)₂CH₃)₂(COD)], the first examples of such complexes.  Protonation of [Pt(L)(P—P)] resulted in a ring-opening reaction to form both the 2-substituted and 1-methyl allyl complexes, [Pt(ŋ³-CH₂CRCH₂)(P—P)]⁺ (R = ᶜPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBu₂PCH₂(o-C₆H₄)CH₂PᵗBu₂) and [Pt(ŋ³-CR₂CHCHMe)(P—P)]⁺ (R = cPr, Me; P—P = Ph₂P(CH₂)₃PPh₂, ᵗBuPCH₂(o-C₆H₄)CH₂PᵗBu₂). The analogous 1-methyl complexes were also formed from [Pt(L)(P—S)], wherein the alkene reacted with a hydride formed by the ortho-metallation of the P—S ligand. Computational models were used to investigate the formation of the allyl structures and it was found that the activation energy had a more significant effect than complex stability on product distributions.  Complexes with β-chloroalkyl ligands [Pt(C(CH₂)₂CR₂Cl)Cl(L)₂] (R = CH₂, H, L = SEt₂, NCᵗBu, Py) were formed by the addition of Pt–Cl across the alkene double bond. Phosphine complexes were formed by the displacement of a ligand from cis–[Pt(C(CH₂)₂CR₂Cl)Cl(Py)₂] (R = CH₂, H). These are the first examples of stable Pt(II) β-haloalkyl complexes. It was found using computational models that the presence of cyclopropyl rings had a stabilising effect on these complexes.</p>


2021 ◽  
Vol 18 ◽  
Author(s):  
Mohammed M. Abadleh ◽  
Ahmad H. Abdullah ◽  
Jalal A. Zahra ◽  
Salim S. Sabri ◽  
Firas F. Awwadi ◽  
...  

: A set of triethylammonium 4-oxo-6-pyridinethiolate–1,3,4-thiadiazoline hybrids (3a-e) were prepared via the reaction of ethyl 2-chloro-6-cyclopropyl-3- nitro-4-oxothieno[2,3-b]pyridine- 5-carboxylate (2) with the appropriate thiobenzoyl- hydrazide (1a-e) in acetonitrile and triethylamine. These hybrids were readily converted, under neutral mild conditions, into the corresponding 4-hydroxy-6-thioxopyridine –thiadiazoline hybrids (5a-e). The structures of the latter set are supported by HRMS, 1H NMR and 13C NMR spectral data and further confirmed by single-crystal X-ray diffraction studies. Alkylation of these hybrids in the presence of triethylamine occurred exclusively at the 6-thioxosulfur, yielding the respective 6-sulfanyl derivatives (6a-c).


2021 ◽  
Author(s):  
◽  
Russell James Hewitt

<p>Cyclopropanes and carbohydrates are materials of great interest to chemists. Ring opening reactions of cyclopropanated carbohydrates have excellent potential for synthesis, due to the many diverse structures that may be obtained. The work described in this thesis explores the scope of such ring opening reactions, and extends to the synthesis and reactions of several novel cyclopropanated carbohydrates, in which synthesis of a natural product was also investigated. Several bicyclic gem-dihalocyclopropanes, including 97, were synthesised. Base-mediated cyclopropane ring opening of 97 in the presence of nucleophiles afforded a series of 2-C-branched glycosides 389 and 390 (Chapter 2), whereas silver-promoted ring expansion provided access to seven-membered rings (255 and 256) (Chapter 3). Studies on the mechanisms of the ring opening processes were also carried out. Ring-opening reactions of carbohydrate-derived gem-dihalocyclopropanes were also applied to the exploration of possible routes to the natural product (--)-TAN-2483B (154). Attempts to convert d-galactose and d-xylose into the dihydropyran 193 are the subject of Chapter 4, while the transformation of d-mannose into 193 and subsequent efforts to prepare the natural product 154 are discussed in Chapter 5.</p>


2021 ◽  
Author(s):  
◽  
Russell James Hewitt

<p>Cyclopropanes and carbohydrates are materials of great interest to chemists. Ring opening reactions of cyclopropanated carbohydrates have excellent potential for synthesis, due to the many diverse structures that may be obtained. The work described in this thesis explores the scope of such ring opening reactions, and extends to the synthesis and reactions of several novel cyclopropanated carbohydrates, in which synthesis of a natural product was also investigated. Several bicyclic gem-dihalocyclopropanes, including 97, were synthesised. Base-mediated cyclopropane ring opening of 97 in the presence of nucleophiles afforded a series of 2-C-branched glycosides 389 and 390 (Chapter 2), whereas silver-promoted ring expansion provided access to seven-membered rings (255 and 256) (Chapter 3). Studies on the mechanisms of the ring opening processes were also carried out. Ring-opening reactions of carbohydrate-derived gem-dihalocyclopropanes were also applied to the exploration of possible routes to the natural product (--)-TAN-2483B (154). Attempts to convert d-galactose and d-xylose into the dihydropyran 193 are the subject of Chapter 4, while the transformation of d-mannose into 193 and subsequent efforts to prepare the natural product 154 are discussed in Chapter 5.</p>


2021 ◽  
Vol 18 ◽  
Author(s):  
Ahmad Ahmad Abdullah ◽  
Jalal Zahra ◽  
Salim Sabri ◽  
Firas Awwadi ◽  
Mohammed Abadleh ◽  
...  

Introduction: The preparation of model 6-chloro-5-nitrothieno[2,3-c]pyridazines incorporating (2'-halo-5'-nitrophenyl) entity is described. Interaction of these substrates with N'-(aryl)benzothiohydrazides, in the presence of triethylamine, followed a formal [4+1] annulation, furnishing the respective 1,3,4-thiadiazoline–benzothiazolo [3,2-b]pyridazine hybrids directly. This one-pot synthesis implies thiophene ring-opening and two consecutive intramolecular cyclizations. The structures of the synthesized new hybrids are supported by MS, NMR, and IR spectral data and further confirmed by single-crystal X-ray diffraction. These hybrids exhibit antiproliferative activity with notable selectivity against solid tumor cell lines (IC50: 4-18 μM). Aims: This study aimed at exploring the scope and applicability of thiophene ring-opening reaction towards the synthesis of new thiadiazoline–[fused]tricyclic conjugates. Background: α-Chloro-β-nitrothienopyridazine underwent ring-opening upon reacting with N'-(aryl)benzothiohydrazides generating 1,3,4-thiadiazoline–benzothiazolo[3,2-b]pyridazines. Objective: This new thiophene ring-opening reaction is applied to the one-pot synthesis of thiadiazoline–benzothiazolo[3,2-b]pyridazine couples. Method: A direct interaction of α-chloro-β-nitrothienopyridazine with N'-(aryl)benzothiohydrazide at room temperature for 1-2 h occurred. Result: α-Chloro-β-nitrothieno[2,3-c]pyridazines are suitable substrates for the facile synthesis of thiadiazoline–benzothiazolo[3,2-b]pyridazine hybrids. Conclusion: This novel ring-opening reaction proceeds via formal [4+1] annulation and provides a versatile approach to various conjugated and/or fused five-membered heterocycles.


Sign in / Sign up

Export Citation Format

Share Document