Insulin Resistance Associated with Clinical Manifestations of Diabetic Kidney Disease (Glomerular Hyperfiltration, Albuminuria, and Kidney Function Decline)

2021 ◽  
Vol 18 ◽  
Author(s):  
María M. Adeva-Andany ◽  
Carlos Fernández-Fernández ◽  
Raquel Funcasta-Calderón ◽  
Eva Ameneiros-Rodríguez ◽  
Lucía Adeva-Contreras ◽  
...  

: Clinical features of diabetic kidney disease include glomerular hyperfiltration, albuminuria, and kidney function decline towards End-Stage Kidney Disease (ESKD). There are presently neither specific markers of kidney involvement in patients with diabetes nor strong predictors of rapid progression to ESKD. Serum-creatinine-based equations used to estimate glomerular filtration rate are notoriously unreliable in patients with diabetes. Early kidney function decline, reduced glomerular filtration rate, and proteinuria contribute to identifying diabetic patients at higher risk for rapid kidney function decline. Unlike proteinuria, the elevation of urinary albumin excretion in the range of microalbuminuria is frequently transient in patients with diabetes and does not always predict progression towards ESKD. Although the rate of progression of kidney function decline is usually accelerated in the presence of proteinuria, histological lesions of diabetes and ESKD may occur with normal urinary albumin excretion. No substantial reduction in the rate of ESKD associated with diabetes has been observed during the last decades despite intensified glycemic control and reno-protective strategies, indicating that existing therapies do not target underlying pathogenic mechanisms of kidney function decline. Very long-term effects of sodium-glucose transporters-2 inhibitors and glucagon-like peptide-1 analogs remain to be defined. In patients with diabetes, glucagon secretion is typically elevated and induces insulin resistance. Insulin resistance is consistently and strongly associated with clinical manifestations of diabetic kidney disease, suggesting that reduced insulin sensitivity participates in the pathogenesis of the disease and may represent a therapeutic objective. Amelioration of insulin sensitivity in patients with diabetes is associated with cardioprotective and kidney-protective effects.

2014 ◽  
Vol 26 (1) ◽  
pp. 220-229 ◽  
Author(s):  
Juan F. Navarro-González ◽  
Carmen Mora-Fernández ◽  
Mercedes Muros de Fuentes ◽  
Jesús Chahin ◽  
María L. Méndez ◽  
...  

2019 ◽  
Vol 95 (1) ◽  
pp. 178-187 ◽  
Author(s):  
Guozhi Jiang ◽  
Andrea On Yan Luk ◽  
Claudia Ha Ting Tam ◽  
Fangying Xie ◽  
Bendix Carstensen ◽  
...  

2021 ◽  
Author(s):  
Anita Layton

The kidney plays an essential role in regulating the homeostasis of electrolytes, acid-base species, and fluids. Kidney structure and function are significantly affected in diabetes. These pathophysiological changes include glomerular hyperfiltration and tubular hypertrophy, and ultimately leading to diabetic kidney disease. A class of medications that have shown promise in slowing the progression to diabetic kidney disease are the sodium-glucose cotransporter 2 (SGLT2) inhibitors. SGLT2 inhibitors target Na+ and glucose reabsorption along the proximal convoluted tubule, enhance urinary glucose, Na+ and fluid excretion, and lower hyperglycemia in diabetes. We postulate that both diabetes-induced and SGLT2 inhibition-induced changes in kidney may exhibit significant sex differences, because the distribution of renal transporters along the nephron may be markedly different between women and men, as recently shown in rodents. The goals of this study are to (i) analyze how kidney function is altered in male and female patients with diabetes, (ii) assess the renal effects, in women and men, of an anti-hyperglycemic therapy that inhibits the sodium-glucose cotransporter 2 (SGLT2) in the proximal convoluted tubules, and (iii) study how those renal effects are altered in uninephrectomy. To accomplish these goals, we have developed computational models of kidney function, separate for male and female patients with diabetes and/or uninephredctomy. The simulation results indicate that by inducing osmotic diuresis in the proximal tubules, SGLT2 inhibition reduces paracellular transport, eventually leading to diuresis and natriuresis.


Sign in / Sign up

Export Citation Format

Share Document