scholarly journals Pituitary volume in patients with Primary Empty Sella and clinical relevance to pituitary hormone secretion: A retrospective single center study

Author(s):  
Gamze Akkus ◽  
Sinan Sözütok ◽  
Fulya Odabaş ◽  
Bilen Onan ◽  
Mehtap Evran ◽  
...  

Background: According to neuroradiological findings, empty sella seems to be deprived of pituitary tissue in sella turcica. Changing size of the pituitary volume is closely related to the occurrence of primary empty sella. The aim of the study is to determine pituitary dysfunction in patients with partial or total primary empty sella and the significance of pituitary volume measurements in these patients. Methods: This study was designed retrospectively. 67 patients (55 females, 12 males) diagnosed with primary empty sella syndrome between the years of 2015-2019 were included in the study. Patients were divided into two groups: partial (PES) and total (TES) empty sella by magnetic resonance imaging (MRI). Basal anterior pituitary and its hormones were assessed. We also included 26 healthy control subjects (19 females, 7 males) to compare the differences in pituitary volumes. Volumes were measured by using Osirix Dicom Viewer ( Pixmeo SARL, Geneve, Swiss) in 3.0 Tesla scanner MRI. Results: 82.1% (n=55) of all patients were PES and the others were (n=12) TES. Hypopituitarism, known as one or more pituitary hormones deficiency, was found in 12 patients (17.9%). While 9 of them had total PES, the others had partial PES. Secondary adrenal insufficiency and gonadotropin deficiency were more prevalent in patients with TES. Mean volume measurements of patients with TES, PES and healthy subjects were 0.23±0.17, 0.35±0.15, 0.54±0.17 cm3, respectively. Except for IGF1 values (p=0.026), there was not any significant correlation found between the anterior pituitary hormones and volume measurements. Conclusion: Although volume measurement has helped in the diagnosis of pituitary empty sella (partial or total), it does not seem to have any significant correlation with pituitary secretory function.

1993 ◽  
Vol 129 (6) ◽  
pp. 489-496 ◽  
Author(s):  
Andreas Kjær

Secretion of the anterior pituitary hormones adrenocorticotropin (ACTH), β-endorphin and prolactin (PRL) is complex and involves a variety of factors. This review focuses on the involvement of arginine-vasopressin (AVP) in neuroendocrine regulation of these anterior pituitary hormones with special reference to receptor involvement, mode of action and origin of AVP. Arginine-vasopressin may act via at least two types of receptors: V1− and V2−receptors, where the pituitary V1−receptor is designated V1b. The mode of action of AVP may be mediating, i.e. anterior pituitary hormone secretion is transmitted via release of AVP, or the mode of action may be permissive, i.e. the presence of AVP at a low and constant level is required for anterior pituitary hormones to be stimulated. Under in vivo conditions, the AVP-induced release of ACTH and β-endorphin is mainly mediated via activation of hypothalamic V1− receptors, which subsequently leads to the release of corticotropin-releasing hormone. Under in vitro conditions, the AVP-stimulated release of ACTH and β-endorphin is mediated via pituitary V1b− receptors. The mode of action of AVP in the ACTH and β-endorphin response to stress and to histamine, which is involved in stress-induced secretion of anterior pituitary hormones, is mediating (utilizing V1− receptors) as well as permissive (utilizing mainly V1− but also V2−receptors). The AVP-induced release of PRL under in vivo conditions is conveyed mainly via activation of V1−receptors but V2−receptors and probably additional receptor(s) may also play a role. In stress- and histamine induced PRL secretion the role of AVP is both mediating (utilizing V1 −receptors) and permissive (utilizing both V1− and V2− receptors). Arginine-vasopressin may be a candidate for the PRL-releasing factor recently identified in the posterior pituitary gland. Arginine-vasopressin of both magno- and parvocellular origin may be involved in the regulation of anterior pituitary hormone secretion and may reach the corticotrophs and the lactotrophs via three main routes: the peripheral circulation, the long pituitary portal vessels or the short pituitary portal vessels.


Physiology ◽  
1999 ◽  
Vol 14 (2) ◽  
pp. 54-58
Author(s):  
W. R. Crowley

The hypothalamus regulates the secretion of anterior pituitary hormones via release of releasing hormones into the hypophysial portal vasculature. Additional neuromessengers act at the pituitary to modulate responses to the hypothalamic hormones. For example, neuropeptide Y enhances the effect of gonadotropin-releasing hormone and the response to the prolactin-inhibiting hormone dopamine.


2020 ◽  
pp. 3-7

Background and aim Empty sella is the neuroradiological or pathological finding of an apparently empty sella turcica. The aim of the study was to analyze the clinical, hormonal and radiological characteristics of patients with empty sella and to compare anterior pituitary function in total versus partial primary empty sella. Methods The records of 36 patients with primary empty sella were retrospectively analyzed over a 24-years period. The patients were evaluated for pituitary function with basal hormone levels (FT4, TSH, IGF1, FSH, LH, cortisol, ACTH, prolactin) and dynamic testing when necessary. Results Our study included 26 women and 10 men with an average age of 47.64 ±15.47 years. Seventy-six per cent of women were multiparous. Fifteen patients were obese. The revealing symptoms were dominated by endocrine signs (52.7%). More than half of our patients complained of headache. Sixty-one of the patients had partial empty sella and the remaining 39% had total empty sella. Two or more pituitary hormone deficiency were found in 41% of cases. Secondary adrenal insufficiency was the most common pituitary hormone deficiency(41.7%).The percentage of hypopituitarism in complete primary empty sella was significantly higher than that in partial primary empty sella (P<0.05).The management was based on hormone replacement therapy in case of hypopituitarism and on analgesic therapy in case of headache. Conclusion The diagnosis of PES must be evoked in an obese, multiparous, hypertensive woman presenting with a symptomatology suggestive of a pituitary deficiency or chronic headache. The correlation between pituitary gland volume and the degree of hypopituitarism highlights the importance of the early diagnosis and hormones replacement.


2005 ◽  
Vol 58 (7-8) ◽  
pp. 410-413 ◽  
Author(s):  
Maja Milosevic ◽  
Milos Stojanovic ◽  
Milica Nesovic

Introduction Empty sella syndrome is a rather frequent neuroradiological finding in the general population and can be associated with hypopituitarism. Examinations reveal low pituitary hormone levels and lack of response to stimuli. Most patients suffer from central hypothyroidism as part of pituitary insufficiency. Primary hypothyreoidism is a rare finding in these patients. Case report We present 3 patients: one female and two male, suffering from complete hypopituitarism, as part of the empty sella syndrome diagnosed due to low concentrations of all pituitary hormones, elevated TSH and low thyroid hormones. TRH, LHRH, ACTH and ITT tests, as well as IGF1 have confirmed hypopituitarism and primary hypothyroidism. CT and NMR in all three patients showed empty sella without a tumor in it. The diagnosis of primary hypothyrodism in the first patient was made before hypopituitarism has taken place, or at the same time in the second patient, whereas in the third patient it was diagnosed twenty years later. In two patients anti-TPO and anti-Tg antibody levels were high, and in the third patient they were not elevated. It can be assumed that the etiology of primary hypothyrodism in all three patients was of autoimmune origin, which caused thyroid hypofunction. High level of TSH in all three patients and especially in the patient whose hypopituitarism was diagnosed twenty years later, showed presence of thyrotrophic cells in the pituitary. Evaluation of the hypothalamic-pituitary-thyroid axis was carried out during the complete substitution therapy of hypopituitarism. Conclusion Diagnosing primary hypothyrodism associated with hypopituitarism helps improving the knowledge on empty sella syndrome and points to different clinical syndromes characterized by lack of mixoedema, although approach to therapy is the same for both primary and central hypothyroidism.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Junpei Yamashita ◽  
Yuji Nishiike ◽  
Thomas Fleming ◽  
Daichi Kayo ◽  
Kataaki Okubo

AbstractThe preoptic area (POA) is one of the most evolutionarily conserved regions of the vertebrate brain and contains subsets of neuropeptide-expressing neurons. Here we found in the teleost medaka that two neuropeptides belonging to the secretin family, pituitary adenylate cyclase-activating polypeptide (Pacap) and vasoactive intestinal peptide (Vip), exhibit opposite patterns of sexually dimorphic expression in the same population of POA neurons that project to the anterior pituitary: Pacap is male-biased, whereas Vip is female-biased. Estrogen secreted by the ovary in adulthood was found to attenuate Pacap expression and, conversely, stimulate Vip expression in the female POA, thereby establishing and maintaining their opposite sexual dimorphism. Pituitary organ culture experiments demonstrated that both Pacap and Vip can markedly alter the expression of various anterior pituitary hormones. Collectively, these findings show that males and females use alternative preoptic neuropeptides to regulate anterior pituitary hormones as a result of their different estrogen milieu.


1987 ◽  
Vol 113 (2) ◽  
pp. 183-192 ◽  
Author(s):  
C. H. G. Irvine ◽  
S. L. Alexander

ABSTRACT We have described a novel technique for collecting pituitary venous effluent in the horse by placing a cannula in the intercavernous sinus close to the outlet of the pituitary veins using a venous pathway unique to equids. Cannula placement and blood collection are carried out painlessly in fully conscious, ambulatory, unstressed animals. There is no interference to hypothalamic, pituitary or target organ function. The blood collected contains readily measurable concentrations of gonadotrophin-releasing hormone, and LH concentrations which can be up to 40 times those in concurrent peripheral blood samples. Four millilitre blood samples, a quantity which permits simultaneous measurement of many hypothalamic and pituitary hormones, can be collected at 2-min intervals for several days. Intercavernous sinus blood flow can be calculated allowing secretion rates of hypothalamic and pituitary hormones to be determined for any time-period. This model is uniquely useful for investigating the normal functional characteristics of several neuroendocrine and endocrine systems. J. Endocr. (1987) 113, 183–192


Sign in / Sign up

Export Citation Format

Share Document