scholarly journals Multi-Body Dynamics Analysis of V-Type Diesel Engine Crankshaft

2014 ◽  
Vol 8 (1) ◽  
pp. 744-749
Author(s):  
Yanming Xu ◽  
Xianbin Teng ◽  
Zhimin Yu ◽  
Tao Ge
2014 ◽  
Vol 654 ◽  
pp. 65-68
Author(s):  
Ling Jin Wang ◽  
Dan Li ◽  
Xiu Xia Lu ◽  
Pei Fan Li ◽  
Ying Jun Jia

Crankshaft is one of the key parts of the diesel engine. Several causes would be lead to the failure of the crankshaft. A novel strength analysis method is used for crankshaft high cycle fatigue simulation of the diesel engine based on flexible multi-body dynamics in this paper. In order to investigate the fatigue strength of other parts of the diesel engine at the same time, a complete coupled dynamic model of diesel engine crankshaft and block is built and coupled dynamics simulation is carried out. Then dynamics calculation results of each part is extracted for high cycle fatigue analysis and the reliability research of the crankshaft, The simulation results show that, the minimum safety factors of the crankshaft is 1.301, it meet the strength requirements, the safety factors of the block and the cap could be calculated at the same time. These suggest that this method can guide the design of the diesel engine crankshaft and has gained significant importance in practical study.


2014 ◽  
Vol 988 ◽  
pp. 617-620
Author(s):  
Ran Ran Wang ◽  
Yan Ming Xu ◽  
Xian Bin Teng

Based on the V-type diesel engine crankshaft system, the paper combined the finite element method (fem) and multi-body dynamics method together, made a virtual simulation analysis. First, by 3d software and finite element software to establish the multi-body dynamic models of the crankshaft, bearing and piston, then simulated the actual engine working condition, and got the data such as crankshaft acceleration, velocity and displacement by the multi-body dynamics simulation analysis. By calculation, the paper found that by using the combination of finite element and multi-body simulation method, can we effectively simulate the diesel engine crankshaft dynamics characteristics.


Author(s):  
Mengsheng Wang ◽  
Nengqi Xiao ◽  
Minghui Fan

In order to analyze the torsional vibration of the crankshaft system, a three-dimensional model of the crankshaft system is established, consisted of the piston, connected rod, crank shaft, flywheel and silicone oil damper. Use by multi-body dynamics simulation software ADAMS, created the multi-body dynamics model of the multiple degrees of freedom consisting of rigid hybrid engine system, to do the torsional vibration response simulation, analysis of the torsional vibration on the crankshaft. Through the torsional vibration test of the diesel engine crankshaft system, the accuracy of the simulation calculation results have been verified. This simulation result has higher accuracy, and this calculation method has certain engineering application value.


2016 ◽  
Vol 12 ◽  
pp. 291-295 ◽  
Author(s):  
Hammad Mazhar ◽  
Tim Osswald ◽  
Dan Negrut

Author(s):  
Shan Xue ◽  
Zhengbin Liu ◽  
Zhen Zhang ◽  
Guangqing Li ◽  
Qiongying Lv

Sign in / Sign up

Export Citation Format

Share Document