Fractal and Defected Ground Structure Microstrip Antenna for Wireless Applications

Author(s):  
Charu Tyagi ◽  
Puneet Chandra Srivastava ◽  
Patrika Jayanti ◽  
Kiran Srivastava
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Pravin Ratilal Prajapati

An application of defected ground structure (DGS) to reduce out-of-band harmonics has been presented. A compact, proximity feed fractal slotted microstrip antenna for wireless local area network (WLAN) applications has been designed. The proposed 3rd iteration reduces antenna size by 43% as compared to rectangular conventional antenna and by introducing H shape DGS, the size of an antenna is further reduced by 3%. The DGS introduces stop band characteristics and suppresses higher harmonics, which are out of the band generated by 1st, 2nd, and 3rd iterations. H shape DGS is etched below the 50 Ω feed line and transmission coefficient parameters (S21) are obtained by CST Microwave Studio software. The values of equivalent L and C model have been extracted using a trial version of the diplexer filter design software. The stop band characteristic of the equivalent LC model also has been simulated by the Advance Digital System software, which gives almost the same response as compared to the simulation of CST Microwave Studio V. 12. The proposed antenna operates from 2.4 GHz to 2.49 GHz, which covers WLAN band and has a gain of 4.46 dB at 2.45 GHz resonance frequency.


2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document