scholarly journals Polysaccharide as Green Corrosion Inhibitor

Author(s):  
Y. Dewangan

The carbohydrates associated with polysaccharide glycosidic bonds are tightly chained, usually linear and highly branched complex molecules. Their structure mainly consists of hydroxyl groups in the form of functional groups, in which an oxygen heterogeneous atom is present. Some polysaccharides have hetero atoms. Nitrogen and Sulfur in addition to oxygen, which have unshared electron pairs. Hetero atoms easily share their electron pair to the vacant d orbitals of the metal ion and prevent the metal from corrosion. Polysaccharides are biodegradable, renewable, inexpensive and environment friendly due to which they are easily used as corrosion inhibitors. The present study mentions some major research work in which polysaccharides are used as corrosion inhibitors. Their mixed type nature has been reported in most research papers, and in the case of steel metal, they mainly follow the Langmuir adsorption isotherm. Chemical (gravimetric analysis) and electrochemical (EIS & PDP) studies are frequently used for the corrosion inhibition study. Some of the current research papers have also used computational or theoretical studies such as quantum chemical study and MD simulation. At the end of this book chapter, a discussion is also given regarding further research and direction related to the topic.

2016 ◽  
Vol 43 (5) ◽  
pp. 3145-3162 ◽  
Author(s):  
Ying Yan ◽  
Xiaoxiao Lin ◽  
Lehua Zhang ◽  
Hao Zhou ◽  
Laiming Wu ◽  
...  

2001 ◽  
Vol 105 (48) ◽  
pp. 12171-12179 ◽  
Author(s):  
Judit E. Šponer ◽  
Frank Glahé ◽  
Jerzy Leszczynski ◽  
Bernhard Lippert ◽  
Jiří Šponer

1982 ◽  
Vol 47 (5) ◽  
pp. 1282-1289 ◽  
Author(s):  
Stanislav Beran

The CNDO/2 method was used for a physico-chemical characterization of faujasite zeolites, modelled by T6O6(OH)12 clusters containing Ni+, Ni2+, Ni(OH)+, Co2+, Co3+, Co(OH)+ cations localized in the SII and SI' cationic positions. It is shown that the cations are bound preferentially to the oxygen atoms of the zeolite skeleton by a strong electron donor-acceptor bond. As the consequence of the bond formation, the electron charge is significantly shifted from a skeleton to the cation. The charge densities calculated on the cations (Ni+ ~ 0.3, Ni2+ ~ 0.35, Co2+ ~ 0.4, Co3+ ~ 1.1 respectively) show that with uni- and bivalent cations the positive charge is in main part compensated by donation of electrons from the skeleton, while with trivalent cations the compensation is only partial. The Ni+ cation possesses significant electron donor properties whereas the Co3+ cation has a strong electron acceptor character. For both cations bivalency appears to be the most stable valent state. Both studied cations show great affinity to hydratation, however, their corresponding hydroxyl adducts - the Ni(OH)+ and Co(OH)+ cations exhibit substantially less acid properties, compared with the hydroxyl groups of the skeleton.


Sign in / Sign up

Export Citation Format

Share Document