scholarly journals Electroencephalographic Evaluation of Cerebral Hyperperfusion Syndrome Following Superficial Temporal Artery-Middle Cerebral Artery Anastomosis

2013 ◽  
Vol 53 (6) ◽  
pp. 388-395 ◽  
Author(s):  
Takato MORIOKA ◽  
Tetsuro SAYAMA ◽  
Takafumi SHIMOGAWA ◽  
Nobutaka MUKAE ◽  
Takeshi HAMAMURA ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Shinji Shimato ◽  
Toshihisa Nishizawa ◽  
Takashi Yamanouchi ◽  
Takashi Mamiya ◽  
Kojiro Ishikawa ◽  
...  

Cerebral hyperperfusion syndrome (CHPS) is a complication that can occur after cerebral revascularization surgeries such as superficial temporal artery- (STA-) middle cerebral artery (MCA) anastomosis, and it can lead to neurological deteriorations. CHPS is usually temporary and disappears within two weeks. The authors present a case in which speech disturbance due to CHPS lasted unexpectedly long and three months was taken for full recovery. A 40-year-old woman, with a history of medication of quetiapine, dopamine 2 receptor antagonist as an antipsychotics for depression, underwent STA-MCA anastomosis for symptomatic left MCA stenosis. On the second day after surgery, the patient exhibited mild speech disturbance which deteriorated into complete motor aphasia and persisted for one month. SPECT showed the increase of cerebral blood flow (CBF) in left cerebrum, verifying the diagnosis of CHPS. Although CBF increase disappeared one month after surgery, speech disturbance continued for additionally two months with a slow improvement. This case represents a rare clinical course of CHPS. The presumable mechanisms of the prolongation of CHPS are discussed, and the medication of quetiapine might be one possible cause by its effect on cerebral vessels as dopamine 2 receptor antagonist, posing the caution against antipsychotics in cerebrovascular surgeries.


2021 ◽  
Vol 50 (2) ◽  
pp. 208-215
Author(s):  
Katsuma Iwaki ◽  
Soh Takagishi ◽  
Koichi Arimura ◽  
Masaharu Murata ◽  
Toru Chiba ◽  
...  

Background: Postoperative cerebral hyperperfusion syndrome (CHS) may occur after superficial temporal artery (STA)-middle cerebral artery (MCA) bypass for moyamoya disease (MMD). Predicting postoperative CHS is challenging; however, we previously reported the feasibility of using a hyperspectral camera (HSC) for monitoring intraoperative changes in brain surface hemodynamics during STA-MCA bypass. Objective: To investigate the utility of HSC to predict postoperative CHS during STA-MCA bypass for patients with MMD. Methods: Hyperspectral images of the cerebral cortex of 29 patients with MMD who underwent STA-MCA bypass were acquired by using an HSC before and after anastomosis. We then analyzed the changes in oxygen saturation after anastomosis and assessed its correlation with CHS. Results: Five patients experienced transient neurological deterioration several days after surgery. 123I-N-Isopropyl-iodoamphetamine single-photon emission computed tomography scan results revealed an intense, focal increase in cerebral blood flow at the site of anastomosis without any cerebral infarction. Patients with CHS showed significantly increased oxygen saturation (SO2) in the cerebral cortex after anastomosis relative to those without CHS (33 ± 28 vs. 8 ± 14%, p < 0.0001). Receiver operating characteristic analysis results show that postoperative CHS likely occurs when the increase rate of cortical SO2 value is >15% (sensitivity, 85.0%; specificity, 81.3%; area under curve, 0.871). Conclusions: This study indicates that hyperspectral imaging of the cerebral cortex may be used to predict postoperative CHS in patients with MMD undergoing STA-MCA bypass.


2020 ◽  
pp. 1-8
Author(s):  
Ryosuke Tashiro ◽  
Miki Fujimura ◽  
Masahito Katsuki ◽  
Taketo Nishizawa ◽  
Yasutake Tomata ◽  
...  

OBJECTIVESuperficial temporal artery–middle cerebral artery (STA-MCA) anastomosis is the standard surgical management for moyamoya disease (MMD), whereas cerebral hyperperfusion (CHP) is one of the potential complications of this procedure that can result in delayed intracerebral hemorrhage and/or neurological deterioration. Recent advances in perioperative management in the early postoperative period have significantly reduced the risk of CHP syndrome, but delayed intracerebral hemorrhage and prolonged/delayed CHP are still major clinical issues. The clinical implication of RNF213 gene polymorphism c.14576G>A (rs112735431), a susceptibility variant for MMD, includes early disease onset and a more severe form of MMD, but its significance in perioperative pathology is unknown. Thus, the authors investigated the role of RNF213 polymorphism in perioperative hemodynamics after STA-MCA anastomosis for MMD.METHODSAmong 96 consecutive adult patients with MMD comprising 105 hemispheres who underwent serial quantitative cerebral blood flow (CBF) analysis by N-isopropyl-p-[123I]iodoamphetamine SPECT after STA-MCA anastomosis, 66 patients consented to genetic analysis of RNF213. Patients were routinely maintained under strict blood pressure control during and after surgery. The local CBF values were quantified at the vascular territory supplied by the bypass on postoperative days (PODs) 1 and 7. The authors defined the radiological CHP phenomenon as a local CBF increase of more than 150% compared with the preoperative values, and then they investigated the correlation between RNF213 polymorphism and the development of CHP.RESULTSCHP at POD 1 was observed in 23 hemispheres (23/73 hemispheres [31.5%]), and its incidence was not statistically different between groups (15/41 [36.6%] in RNF213-mutant group vs 8/32 [25.0%] in RNF213–wild type (WT) group; p = 0.321). CHP on POD 7, which is a relatively late period of the CHP phenomenon in MMD, was evident in 9 patients (9/73 hemispheres [12.3%]) after STA-MCA anastomosis. This prolonged/delayed CHP was exclusively observed in the RNF213-mutant group (9/41 [22.0%] in the RNF213-mutant group vs 0/32 [0.0%] in the RNF213-WT group; p = 0.004). Multivariate analysis revealed that RNF213 polymorphism was significantly associated with CBF increase on POD 7 (OR 5.47, 95% CI 1.06–28.35; p = 0.043).CONCLUSIONSProlonged/delayed CHP after revascularization surgery was exclusively found in the RNF213-mutant group. Although the exact mechanism underlying the contribution of RNF213 polymorphism to the prolonged/delayed CBF increase in patients with MMD is unclear, the current study suggests that genetic analysis of RNF213 is useful for predicting the perioperative pathology of patients with MMD.


Sign in / Sign up

Export Citation Format

Share Document