scholarly journals Actions of Groups of Finite Morley Rank on Small Abelian Groups

2009 ◽  
Vol 15 (1) ◽  
pp. 70-90 ◽  
Author(s):  
Adrien Deloro

AbstractWe classify actions of groups of finite Morley rank on abelian groups of Morley rank 2: there are essentially two, namely the natural actions of SL(V) and GL(V) with V a vector space of dimension 2. We also prove an identification theorem for the natural module of SL2 in the finite Morley rank category.

2003 ◽  
Vol 266 (2) ◽  
pp. 375-381 ◽  
Author(s):  
Ayşe Berkman ◽  
Alexandre V. Borovik

1991 ◽  
Vol 56 (3) ◽  
pp. 915-931 ◽  
Author(s):  
Ali Nesin

Cherlin introduced the concept of bad groups (of finite Morley rank) in [Ch1]. The existence of such groups is an open question. If they exist, they will contradict the Cherlin-Zil'ber conjecture that states that an infinite simple group of finite Morley rank is a Chevalley group over an algebraically closed field. In this paper, we prove that bad groups of finite Morley rank 3 act on a natural geometry Γ (namely on a special pseudoplane; see Corollary 20) sharply flag-transitively.We show that Γ is not very far from being a projective plane and when it is so rk(Γ) = 2 and Γ is not Desarguesian (Theorem 2). Baldwin [Ba] recently discovered non-Desarguesian projective planes of Morley rank 2. This discovery, together with this paper, makes the existence of bad groups (also of bad fields) more plausible. A bad field is a pair (K, A) of finite Morley rank, where K is an algebraically closed field, A <≠K* and A is infinite. There existence is also unknown.In this paper, we define the concept of a sharp-field as a pair (K, A), where K is a field, A < K*and1. K = A − A,2. If a + b − 1 ∈ A, a ∈ A, b ∈ A, then either a = 1 or b = 1.If K is finite this is equivalent to 1 and2.′ ∣K∣ = ∣A∣2 ∣A∣ + 1.Finite sharp-fields are special cases of difference sets [De]


2002 ◽  
Vol 67 (4) ◽  
pp. 1570-1578 ◽  
Author(s):  
Jeffrey Burdges ◽  
Gregory Cherlin

Borovik proposed an axiomatic treatment of Morley rank in groups, later modified by Poizat, who showed that in the context of groups the resulting notion of rank provides a characterization of groups of finite Morley rank [2]. (This result makes use of ideas of Lascar, which it encapsulates in a neat way.) These axioms form the basis of the algebraic treatment of groups of finite Morley rank undertaken in [1].There are, however, ranked structures, i.e., structures on which a Borovik-Poizat rank function is defined, which are not ℵ0-stable [1, p. 376]. In [2, p. 9] Poizat raised the issue of the relationship between this notion of rank and stability theory in the following terms: “… un groupe de Borovik est une structure stable, alors qu'un univers rangé n'a aucune raison de l'être …” (emphasis added). Nonetheless, we will prove the following:Theorem 1.1. A ranked structure is superstable.An example of a non-ℵ0-stable structure with Borovik-Poizat rank 2 is given in [1, p. 376]. Furthermore, it appears that this example can be modified in a straightforward way to give ℵ0-stable structures of Borovik-Poizat rank 2 in which the Morley rank is any countable ordinal (which would refute a claim of [1, p. 373, proof of C.4]). We have not checked the details. This does not leave much room for strenghthenings of our theorem. On the other hand, the proof of Theorem 1.1 does give a finite bound for the heights of certain trees of definable sets related to unsuperstability, as we will see in Section 5.


2016 ◽  
Vol 81 (4) ◽  
pp. 1451-1480 ◽  
Author(s):  
ALEXANDRE BOROVIK ◽  
ADRIEN DELORO

AbstractWe classify irreducible actions of connected groups of finite Morley rank on abelian groups of Morley rank 3.


2008 ◽  
Vol 319 (1) ◽  
pp. 50-76 ◽  
Author(s):  
Ayşe Berkman ◽  
Alexandre V. Borovik ◽  
Jeffrey Burdges ◽  
Gregory Cherlin

Author(s):  
Bodan Arsovski

Abstract Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.


1999 ◽  
Vol 211 (2) ◽  
pp. 409-456 ◽  
Author(s):  
Tuna Altınel ◽  
Alexandre Borovik ◽  
Gregory Cherlin

Sign in / Sign up

Export Citation Format

Share Document