Quasi-subtractive varieties

2011 ◽  
Vol 76 (4) ◽  
pp. 1261-1286 ◽  
Author(s):  
Tomasz Kowalski ◽  
Francesco Paoli ◽  
Matthew Spinks

AbstractVarieties like groups, rings, or Boolean algebras have the property that, in any of their members, the lattice of congruences is isomorphic to a lattice of more manageable objects, for example normal subgroups of groups, two-sided ideals of rings, filters (or ideals) of Boolean algebras. Abstract algebraic logic can explain these phenomena at a rather satisfactory level of generality: in every member A of a τ-regular variety the lattice of congruences of A is isomorphic to the lattice of deductive filters on A of the τ-assertional logic of . Moreover, if has a constant 1 in its type and is 1-subtractive, the deductive filters on A ∈ of the 1-assertional logic of coincide with the -ideals of A in the sense of Gumm and Ursini, for which we have a manageable concept of ideal generation.However, there are isomorphism theorems, for example, in the theories of residuated lattices, pseudointerior algebras and quasi-MV algebras that cannot be subsumed by these general results. The aim of the present paper is to appropriately generalise the concepts of subtractivity and τ-regularity in such a way as to shed some light on the deep reason behind such theorems. The tools and concepts we develop hereby provide a common umbrella for the algebraic investigation of several families of logics, including substructural logics, modal logics, quantum logics, and logics of constructive mathematics.

Studia Logica ◽  
2021 ◽  
Author(s):  
D. Fazio ◽  
A. Ledda ◽  
F. Paoli

AbstractThe variety of (pointed) residuated lattices includes a vast proportion of the classes of algebras that are relevant for algebraic logic, e.g., $$\ell $$ ℓ -groups, Heyting algebras, MV-algebras, or De Morgan monoids. Among the outliers, one counts orthomodular lattices and other varieties of quantum algebras. We suggest a common framework—pointed left-residuated $$\ell $$ ℓ -groupoids—where residuated structures and quantum structures can all be accommodated. We investigate the lattice of subvarieties of pointed left-residuated $$\ell $$ ℓ -groupoids, their ideals, and develop a theory of left nuclei. Finally, we extend some parts of the theory of join-completions of residuated $$\ell $$ ℓ -groupoids to the left-residuated case, giving a new proof of MacLaren’s theorem for orthomodular lattices.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Jiří Rachůnek ◽  
Dana Šalounová

AbstractBounded Rℓ-monoids form a large subclass of the class of residuated lattices which contains certain of algebras of fuzzy and intuitionistic logics, such as GMV-algebras (= pseudo-MV-algebras), pseudo-BL-algebras and Heyting algebras. Moreover, GMV-algebras and pseudo-BL-algebras can be recognized as special kinds of pseudo-MV-effect algebras and pseudo-weak MV-effect algebras, i.e., as algebras of some quantum logics. In the paper, bipartite, local and perfect Rℓ-monoids are investigated and it is shown that every good perfect Rℓ-monoid has a state (= an analogue of probability measure).


2017 ◽  
Vol 5 ◽  
Author(s):  
PIERRE-EMMANUEL CAPRACE ◽  
COLIN D. REID ◽  
GEORGE A. WILLIS

We use the structure lattice, introduced in Part I, to undertake a systematic study of the class $\mathscr{S}$ consisting of compactly generated, topologically simple, totally disconnected locally compact groups that are nondiscrete. Given $G\in \mathscr{S}$, we show that compact open subgroups of $G$ involve finitely many isomorphism types of composition factors, and do not have any soluble normal subgroup other than the trivial one. By results of Part I, this implies that the centralizer lattice and local decomposition lattice of $G$ are Boolean algebras. We show that the $G$-action on the Stone space of those Boolean algebras is minimal, strongly proximal, and microsupported. Building upon those results, we obtain partial answers to the following key problems: Are all groups in $\mathscr{S}$ abstractly simple? Can a group in $\mathscr{S}$ be amenable? Can a group in $\mathscr{S}$ be such that the contraction groups of all of its elements are trivial?


1972 ◽  
Vol 37 (4) ◽  
pp. 646-656 ◽  
Author(s):  
Daniel B. Demaree

It is well known that the laws of logic governing the sentence connectives—“and”, “or”, “not”, etc.—can be expressed by means of equations in the theory of Boolean algebras. The task of providing a similar algebraic setting for the full first-order predicate logic is the primary concern of algebraic logicians. The best-known efforts in this direction are the polyadic algebras of Halmos (cf. [2]) and the cylindric algebras of Tarski (cf. [3]), both of which may be described as Boolean algebras with infinitely many additional operations. In particular, there is a primitive operator, cκ, corresponding to each quantification, ∃υκ. In this paper we explore a version of algebraic logic conceived by A. H. Copeland, Sr., and described in [1], which has this advantage: All operators are generated from a finite set of primitive operations.Following the theory of cylindric algebras, we introduce, in the natural way, the classes of Copeland set algebras (SCpA), representable Copeland algebras (RCpA), and Copeland algebras of formulas. Playing a central role in the discussion is the set, Γ, of all equations holding in every set algebra. The reason for this is that the operations in a set algebra reflect the notion of satisfaction of a formula in a model, and hence an equation expresses the fact that two formulas are satisfied by the same sequences of objects in the model. Thus to say that an equation holds in every set algebra is to assert that a certain pair of formulas are logically equivalent.


Author(s):  
Akbar Paad

In this paper, the notions of tense operators and tense filters in \(BL\)-algebras are introduced and several characterizations of them are obtained. Also, the relation among tense \(BL\)-algebras, tense \(MV\)-algebras and tense Boolean algebras are investigated. Moreover, it is shown that the set of all tense filters of a \(BL\)-algebra is complete sublattice of \(F(L)\) of all filters of \(BL\)-algebra \(L\). Also, maximal tense filters and simple tense \(BL\)-algebras and the relation between them are studied. Finally, the notions of tense congruence relations in tense \(BL\)-algebras and strict tense \(BL\)-algebras are introduced and an one-to-one correspondence between tense filters and tense congruences relations induced by tense filters are provided.


10.29007/3szk ◽  
2018 ◽  
Author(s):  
George Metcalfe

Proof theory can provide useful tools for tackling problems in algebra. In particular, Gentzen systems admitting cut-eliminationhave been used to establish decidability, complexity, amalgamation, admissibility, and generation results for varieties of residuated lattices corresponding to substructural logics. However, for classes of algebras bearing some family resemblance to groups, such as lattice-ordered groups, MV-algebras, BL-algebras, and cancellative residuated lattices, the proof-theoretic approach has met so far only with limited success.The main aim of this talk will be to introduce proof-theoretic methods for the class of lattice-ordered groups and to explain how these methods can be used to obtain new syntactic proofs of two core theorems: namely, Holland's result that this class is generated as a variety by the lattice-ordered group of order-preserving automorphisms of the real numbers, and the decidability of the word problem for free lattice-ordered groups.


2021 ◽  
Vol 29 (1) ◽  
pp. 143-164
Author(s):  
Tahsin Oner ◽  
Tugce Katican ◽  
Arsham Borumand Saeid ◽  
Mehmet Terziler

Abstract In this paper, at first we study strong Sheffer stroke NMV-algebra. For getting more results and some classification, the notions of filters and subalgebras are introduced and studied. Finally, by a congruence relation, we construct a quotient strong Sheffer stroke NMV-algebra and isomorphism theorems are proved.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550040 ◽  
Author(s):  
Ivan Chajda

The classical logic was axiomatized algebraically by means of Boolean algebras in 19th century by George Boole. Similar attempts went on 20th century for algebraic axiomatization of non-classical logics, e.g. intuitionistic logics (Brouwer and Heyting algebras), many-valued logics (Łukasiewicz, Chang’s MV-algebras, Post algebras), the logic of quantum mechanics (orthomodular lattices and posets) and fuzzy logics (residuated lattices). In this paper, we are focused in a common generalization of MV-algebras and orthomodular lattices. The resulting algebras, called basic algebras, have surprisingly strong and interesting properties and they can be investigated in their own. The aim of the paper is to get an overview of results reached during the last decade.


Sign in / Sign up

Export Citation Format

Share Document