Copeland algebras

1972 ◽  
Vol 37 (4) ◽  
pp. 646-656 ◽  
Author(s):  
Daniel B. Demaree

It is well known that the laws of logic governing the sentence connectives—“and”, “or”, “not”, etc.—can be expressed by means of equations in the theory of Boolean algebras. The task of providing a similar algebraic setting for the full first-order predicate logic is the primary concern of algebraic logicians. The best-known efforts in this direction are the polyadic algebras of Halmos (cf. [2]) and the cylindric algebras of Tarski (cf. [3]), both of which may be described as Boolean algebras with infinitely many additional operations. In particular, there is a primitive operator, cκ, corresponding to each quantification, ∃υκ. In this paper we explore a version of algebraic logic conceived by A. H. Copeland, Sr., and described in [1], which has this advantage: All operators are generated from a finite set of primitive operations.Following the theory of cylindric algebras, we introduce, in the natural way, the classes of Copeland set algebras (SCpA), representable Copeland algebras (RCpA), and Copeland algebras of formulas. Playing a central role in the discussion is the set, Γ, of all equations holding in every set algebra. The reason for this is that the operations in a set algebra reflect the notion of satisfaction of a formula in a model, and hence an equation expresses the fact that two formulas are satisfied by the same sequences of objects in the model. Thus to say that an equation holds in every set algebra is to assert that a certain pair of formulas are logically equivalent.

2002 ◽  
Vol 67 (1) ◽  
pp. 197-213 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractWe confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language ℒ with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which may occur arbitrarily many times), X has a proof containing exactly α + 1 variables, but X has no proof containing only α variables. This solves a problem posed by Tarski and Givant in 1987.


2014 ◽  
Vol 79 (01) ◽  
pp. 208-222 ◽  
Author(s):  
ROBIN HIRSCH ◽  
TAREK SAYED AHMED

Abstract Hirsch and Hodkinson proved, for $3 \le m < \omega $ and any $k < \omega $ , that the class $SNr_m {\bf{CA}}_{m + k + 1} $ is strictly contained in $SNr_m {\bf{CA}}_{m + k} $ and if $k \ge 1$ then the former class cannot be defined by any finite set of first-order formulas, within the latter class. We generalize this result to the following algebras of m-ary relations for which the neat reduct operator $_m $ is meaningful: polyadic algebras with or without equality and substitution algebras. We also generalize this result to allow the case where m is an infinite ordinal, using quasipolyadic algebras in place of polyadic algebras (with or without equality).


1969 ◽  
Vol 34 (3) ◽  
pp. 331-343 ◽  
Author(s):  
J. Donald Monk

Cylindric algebras were introduced by Alfred Tarski about 1952 to provide an algebraic analysis of (first-order) predicate logic. With each cylindric algebra one can, in fact, associate a certain, in general infinitary, predicate logic; for locally finite cylindric algebras of infinite dimension the associated predicate logics are finitary. As with Boolean algebras and sentential logic, the algebraic counterpart of completeness is representability. Tarski proved the fundamental result that every locally finite cylindric algebra of infinite dimension is representable.


1969 ◽  
Vol 34 (3) ◽  
pp. 344-352 ◽  
Author(s):  
James S. Johnson

The notion of polyadic algebra was introduced by Halmos to reflect algebraically the predicate logic without equality. Later Halmos enriched the study with the introduction of the notion of equality. These algebras are very closely related to the cylindric algebras of Tarski. The notion of diagonal free cylindric algebra predates that of cylindric algebra and is also due to Tarski. The theory of diagonal free algebras forms an important fragment of the theories of polyadic and cylindric algebras.


2006 ◽  
Vol 71 (1) ◽  
pp. 104-118 ◽  
Author(s):  
Gábor Sági ◽  
Saharon Shelah

AbstractWe show that there is a restriction, or modification of the finite-variable fragments of First Order Logic in which a weak form of Craig's Interpolation Theorem holds but a strong form of this theorem does not hold. Translating these results into Algebraic Logic we obtain a finitely axiomatizable subvariety of finite dimensional Representable Cylindric Algebras that has the Strong Amalgamation Property but does not have the Superamalgamation Property. This settles a conjecture of Pigozzi [12].


1962 ◽  
Vol 27 (4) ◽  
pp. 469-470
Author(s):  
Aubert Daigneault

2002 ◽  
Vol 8 (3) ◽  
pp. 348-379 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractFor every finite n ≥ 4 there is a logically valid sentence φn with the following properties: φn contains only 3 variables (each of which occurs many times); φn contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol); φn has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n − 1 variables. This result was first proved using the machinery of algebraic logic developed in several research monographs and papers. Here we replicate the result and its proof entirely within the realm of (elementary) first-order binary predicate logic with equality. We need the usual syntax, axioms, and rules of inference to show that φn has a proof with only n variables. To show that φn has no proof with only n − 1 variables we use alternative semantics in place of the usual, standard, set-theoretical semantics of first-order logic.


2008 ◽  
Vol 73 (1) ◽  
pp. 65-89 ◽  
Author(s):  
Hajnal Andréka ◽  
István Németi ◽  
Tarek Sayed Ahmed

AbstractWe give a novel application of algebraic logic to first order logic. A new, flexible construction is presented for representable but not completely representable atomic relation and cylindric algebras of dimension n (for finite n > 2) with the additional property that they are one-generated and the set of all n by n atomic matrices forms a cylindric basis. We use this construction to show that the classical Henkin-Orey omitting types theorem fails for the finite variable fragments of first order logic as long as the number of variables available is > 2 and we have a binary relation symbol in our language. We also prove a stronger result to the effect that there is no finite upper bound for the extra variables needed in the witness formulas. This result further emphasizes the ongoing interplay between algebraic logic and first order logic.


1985 ◽  
Vol 50 (3) ◽  
pp. 815-838 ◽  
Author(s):  
P. Roeper

The quantifiers of standard predicate logic are interpreted as ranging over domains of individuals, and interpreted formulae beginning with a quantifier make claims to the effect that something is true of every individual, i.e. of the whole domain, or of some individuals, i.e. of part of the domain. To state that something is true of all or part of a totality seems to be the basic significance of universal and existential quantification, and this by itself does not involve a specification of the structure of the totality. This means that the notion of quantification by itself does not demand totalities of individuals, i.e. atomic totalities, as domains of quantification. Nonatomic domains, such as volumes of space, or surfaces, are equally in order. So one might say that a certain predicate applies “everywhere” or “somewhere” in such a domain. All that the concept of quantification requires is a totality which is structured in terms of a part-to-whole relation, and appropriate properties that apply to part or all of the totality. Quantification does not demand that the totality have smallest parts, or atoms. There is no conflict with the sense of universal or existential quantification if the domain is nonatomic, if every one of its parts has itself proper parts.The most general kind of quantification theory must then deal with totalities of any kind, atomic or not. The relationships among the parts of a domain are described by the theory of Boolean algebras, which we can regard as the most general characterisation of a totality, of a domain of quantification.In this paper I shall be concerned with this generalised theory of quantification, which encompasses nonatomic domains as well as atomic and mixed domains, i.e. totalities consisting entirely or partly of individuals.


Author(s):  
Tarek Sayed Ahmed

Fix a finite ordinal \(n\geq 3\) and let \(\alpha\) be an arbitrary ordinal. Let \(\mathsf{CA}_n\) denote the class of cylindric algebras of dimension \(n\) and \(\sf RA\) denote the class of relation algebras. Let \(\mathbf{PA}_{\alpha}(\mathsf{PEA}_{\alpha})\) stand for the class of polyadic (equality) algebras of dimension \(\alpha\). We reprove that the class \(\mathsf{CRCA}_n\) of completely representable \(\mathsf{CA}_n$s, and the class \(\sf CRRA\) of completely representable \(\mathsf{RA}\)s are not elementary, a result of Hirsch and Hodkinson. We extend this result to any variety \(\sf V\) between polyadic algebras of dimension \(n\) and diagonal free \(\mathsf{CA}_n\)s. We show that that the class of completely and strongly representable algebras in \(\sf V\) is not elementary either, reproving a result of Bulian and Hodkinson. For relation algebras, we can and will, go further. We show the class \(\sf CRRA\) is not closed under \(\equiv_{\infty,\omega}\). In contrast, we show that given \(\alpha\geq \omega\), and an atomic \(\mathfrak{A}\in \mathsf{PEA}_{\alpha}\), then for any \(n<\omega\), \(\mathfrak{Nr}_n\A\) is a completely representable \(\mathsf{PEA}_n\). We show that for any \(\alpha\geq \omega\), the class of completely representable algebras in certain reducts of \(\mathsf{PA}_{\alpha}\)s, that happen to be varieties, is elementary. We show that for \(\alpha\geq \omega\), the the class of polyadic-cylindric algebras dimension \(\alpha\), introduced by Ferenczi, the completely representable algebras (slightly altering representing algebras) coincide with the atomic ones. In the last algebras cylindrifications commute only one way, in a sense weaker than full fledged commutativity of cylindrifications enjoyed by classical cylindric and polyadic algebras. Finally, we address closure under Dedekind-MacNeille completions for cylindric-like algebras of dimension \(n\) and \(\mathsf{PA}_{\alpha}\)s for \(\alpha\) an infinite ordinal, proving negative results for the first and positive ones for the second.


Sign in / Sign up

Export Citation Format

Share Document