Creation of ultra-flexible organic piezoelectric film for in vivo power generation

Impact ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 36-38
Author(s):  
Kenji Ishida

In the field of chemistry and physics, an electrical dipole of molecule arises from differences of electronegativity of atoms constituting molecules and is quantified by its dipole moment, which is the distance between atoms multiplied by the partial charge. Dipoles hold an enormous amount of promise for a range of different applications in various fields, including sensor technology, semiconductors, nanotechnology and healthcare. Professor Kenji Ishida, who is leading a team based within the Material Physical Chemistry Laboratory at Kobe University in Japan, is focused on working on piezoelectric power generation using the movement of body tissue. Their findings could usher in the next generation of sensors that help patients with a broad range of different conditions.

1979 ◽  
Vol 34 (11) ◽  
pp. 1269-1274 ◽  
Author(s):  
Erik Bjarnov

Vinyl ketene (1,3-butadiene-1-one) has been synthesized by vacuum pyrolysis of 3-butenoic 2-butenoic anhydride. The microwave and infrared spectra of vinyl ketene in the gas phase at room temperature have been studied. The trans-rotamer has been identified, and the spectroscopic constants were found to be Ã= 39571(48) MHz, B̃ = 2392.9252(28) MHz, C̃ = 2256.0089(28) MHz, ⊿j = 0.414(31) kHz, and ⊿JK = - 34.694(92) kHz. The electrical dipole moment was found to be 0.987(23) D with μa = 0.865(14) D and μb = 0.475(41) D. A tentative assignment has been made for 17 of the 21 normal modes of vibration


2005 ◽  
Vol 99 (4) ◽  
pp. 1582-1591 ◽  
Author(s):  
Donna R. Hill ◽  
Marianne E. Brunner ◽  
Deborah C. Schmitz ◽  
Catherine C. Davis ◽  
Janine A. Flood ◽  
...  

Previous in vitro and in vivo animal studies showed that O2and CO2concentrations can affect virulence of pathogenic bacteria such as Staphylococcus aureus. The objective of this work was to measure O2and CO2levels in the vaginal environment during tampon wear using newly available sensor technology. Measurements by two vaginal sensors showed a decrease in vaginal O2levels after tampon insertion. These decreases were independent of the type of tampons used and the time of measurement (mid-cycle or during menstruation). These results are not in agreement with a previous study that concluded that oxygenation of the vaginal environment during tampon use occurred via delivery of a bolus of O2during the insertion process. Our measurements of gas levels in menses showed the presence of both O2and CO2in menses. The tampons inserted into the vagina contained O2and CO2levels consistent with atmospheric conditions. Over time during tampon use, levels of O2in the tampon decreased and levels of CO2increased. Tampon absorbent capacity, menses loading, and wear time influenced the kinetics of these changes. Colonization with S. aureus had no effect on the gas profiles during menstruation. Taken collectively, these findings have important implications on the current understanding of gaseous changes in the vaginal environment during menstruation and the potential role(s) they may play in affecting bacterial virulence factor production.


Sign in / Sign up

Export Citation Format

Share Document