scholarly journals THEORETICAL ISSUES OF CALCULATION OF SHORT-CIRCUIT CURRENTS IN SHIPBOARD ELECTRIC POWER SYSTEMS WITH ELECTRIC POWER DISTRIBUTION ON A DIRECT CURRENT

Author(s):  
Andrey V. Grigoryev ◽  
◽  
Aleksej Yu. Vasilyev ◽  
Yurii A. Kulagin ◽  
◽  
...  
2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali ◽  
Betta Aidya Suroya

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


2021 ◽  
Vol 3 (3) ◽  
pp. 26-32
Author(s):  
Yury P. GUSEV ◽  
◽  
Alisher G. KAYUMOV ◽  

The growing levels of short-circuit currents (SCC) in electric power systems (EPS) generate the need of improving the SCC calculation methods. Factors causing the occurrence of dynamic out-of-phase operation of synchronous generators (SGs) and its effect on the SCC are studied. To analyze the effect the out-of-phase operation of SGs has on the SCC, an analysis model was developed in the EMTP-RV software package (Powersys, France), and variant calculations were carried out. The study was carried out for an SG operating in parallel with the EPS. The parameters of electrical equipment installed in the EPS of Russia and CIS countries were used as initial data. The effects the mechanical inertia and electromagnetic parameters of the rotor and stator windings have on the occurrence of out-of-phase operation of generators was considered. It is shown that the analysis of SCC carried out without taking into account the dynamic out-of-phase operation of SGs yields SCC values significantly overestimated in comparison with those calculated according to the standards that are currently in force. By the short-circuit clearing time, the initial phase of the SCC component from the SG may differ from the initial phase of the SCC component from the network source by 90 degrees or more; i.e., the total SCC obtained taking into account the SG current phase becomes less than the current from the network source. It is recommended to take into account the dynamic out-of-phase operation of SGs in solving matters concerned with coordinating the SCC levels and to improve methods for calculating SCC in the EPS.


2013 ◽  
Vol 676 ◽  
pp. 302-305
Author(s):  
Hong Song ◽  
Xiao Hui Zeng ◽  
Wei Peng Zhou

Electric power distribution systems play an important role in electric power systems, in which automation intelligent distribution terminal units are critical for the performance of power distribution systems. The software of an automation intelligent electric power distribution terminal unit based on digital signal processor is designed in the paper, a way of admixture programming with C language and assembly language. In this manner, real-time requirement on the electric power distribution system will be satisfied, the reliability and stability of the software are ensured as while. It has a broad application prospects in electric power systems.


2019 ◽  
Vol 10 (1) ◽  
pp. 35-41
Author(s):  
Dwi Ajiatmo ◽  
Imam Robandi ◽  
Machrus Ali

Short circuit is one type of interference that often occurs in electric power systems. The interference if it lasts a long time will affect the quality and continity of electrical power distribution as well as the reliability and safety of the equipment on the system. To minimize the possibility of interference and to minimize the consequences caused by interference, an analysis of disturbances in the electric power system is needed. This study discusses the classification and analysis of disturbances in the electric power system. The type of interference in the electric power system is classified into two, namely symmetry and non-symmetrical interference. Symmetry disturbances are three phase disturbances which are described by the equation of the sequence of the symmetry component system. Sequence equations from the symmetry component system are positive sequence equations, negative sequence equations, and zero sequence equations. Non-symmetrical interference is a disorder that often occurs in electric power systems, namely the interference of one network to the ground, network interference to the network and interference of two networks to the ground. This research is to classify and to analyze the types of disturbances in the Java-Bali electric power system 500 kV 20 buses in the form of a single line diagram, using Power World Simulator and ETAP Software applications. The simulation results are calculated and display the simulation design of the power system with the tools contained in the program.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012025
Author(s):  
N S Bodrug ◽  
O V Skripko

Abstract Currently, one of the important problems for domestic energy is the replacement of an outdated fleet of equipment at substations of electric power systems (EPS). The paper addressed the issue of upgrading the "Ice" substation in part of the selection of switches, checking the reliability of switches and the reliability of the substation in general. The substation characteristic is given, the changes in the main scheme of the substation electrical connections are substantiated, switches for all substation voltages are selected according to the current short circuit currents. To assess the degree of reliability of the selected switches, the substation is determined by their probability of refusal. Based on the assessment of the likelihood of failures and other equipment for the substation, the estimated time of trouble-free operation was determined, the average time of trouble-free operation and the average substation recovery time.


2021 ◽  
Vol 6 (3) ◽  
pp. 27-33
Author(s):  
Godwin Diamenu

Power systems in general supply consumers with electrical energy as economically and reliably as possible. Reliable electric power systems serve customer loads without interruptions in supply voltage. Electric power generation facilities must produce enough power to meet customer demand. Electrical energy produced and delivered to customers through generation, transmission and distribution systems, constitutes one of the largest consumers markets the world over. The benefits of electric power systems are integrated into the much faster modern life in such extent that it is impossible to imagine the society without the electrical energy. The rapid growth of electric power distribution grids over the past few decades has resulted in a large increment in the number of grid lines in operation and their total length. These grid lines are exposed to faults as a result of lightning, short circuits, faulty equipment, mis-operation, human errors, overload, and aging among others. A fault implies any abnormal condition which causes a reduction in the basic insulation strength between phase conductors or phase conductors and earth, or any earthed screens surrounding the conductors. In this paper, different types of faults that affected the electric power distribution grid of selected operational districts of Electricity Company of Ghana (ECG) in the Western region of Ghana was analyzed and the results presented. Outages due to bad weather and load shedding contributed significantly to the unplanned outages that occurred in the medium voltage (MV) distribution grid. Blown fuse and loose contact faults were the major contributor to unplanned outages in the low voltage (LV) electric power distribution grid.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 64 ◽  
Author(s):  
Fernando Yanine ◽  
Antonio Sanchez-Squella ◽  
Aldo Barrueto ◽  
Sarat Kumar Sahoo ◽  
Felisa M. Cordova

For no one is a secret that nowadays electric power distribution systems (EPDS) are being faced with a number of challenges and concerns, which emanate not so much from a shortage of energy supply but from environmental, infrastructural and operational issues. They are required to preserve stability and continuity of operations at any time no matter what, regardless of what may occur in the surroundings. This is the true measure of what sustainable energy systems (SES) are all about and homeostaticity of energy systems seeks just that: to bring about a rapid, effective and efficient state of equilibrium between energy supply and energy expenditure in electric power systems (EPS). The paper presents the theoretical groundwork and a brief description of the model for the operation of SES and their role in energy sustainability, supported by theoretical and empirical results. The concept of homeostaticity in EPDS is explained, along with its role in SES.   


Sign in / Sign up

Export Citation Format

Share Document