electrical connections
Recently Published Documents


TOTAL DOCUMENTS

352
(FIVE YEARS 63)

H-INDEX

21
(FIVE YEARS 4)

Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Nerio Andrés Montoya ◽  
Valeria Criscuolo ◽  
Andrea Lo Presti ◽  
Raffaele Vecchione ◽  
Christian Falconi

Four-wire measurements have been introduced by Lord Kelvin in 1861 and have since become the standard technique for characterizing small resistances and impedances. However, high-density 4-wire measurements are generally complex, time-consuming, and inefficient because of constraints on interconnects, pads, external wires, and mechanical contacts, thus reducing reproducibility, statistical significance, and throughput. Here, we introduce, systematically design, analyze, and experimentally validate zero interconnect networks interfaced to external instrumentation by couples of twin wire. 3D-printed holders with magnets, interconnects, nonadhesive layers, and spacers can effortlessly establish excellent electrical connections with tunable or minimum contact forces and enable accurate measurements even for delicate devices, such as thin metals on soft polymers. As an example, we measured all the resistances of a twin-wire 29-resistor network made of silver-nanoparticle ink printed on polyimide, paper, or photo paper, including during sintering or temperature calibration, resulting in an unprecedentedly easy and accurate characterization of both resistivity and its temperature coefficient. The theoretical framework and experimental strategies reported here represent a breakthrough toward zero interconnect, simple, and efficient high-density 4-wire characterizations, can be generalized to other 4-wire measurements (impedances, sensors) and can open the way to more statistically meaningful and reproducible analyses of materials, high-throughput measurements, and minimally invasive characterizations of biomaterials.


Author(s):  
Alesandre Alves ◽  
Maurício de Campos ◽  
Paulo Sérgio Sausen ◽  
João Manoel Lenz ◽  
Airam Teresa Zago Romcy Sausen

Author(s):  
Andreas Gester ◽  
Guntram Wagner ◽  
Pascal Pöthig ◽  
Jean Pierre Bergmann ◽  
Marco Fritzsche

AbstractFor fulfilling the demand of durable yet lightweight electrical connections in transportation industries, ultrasonic metal welding (USMW) sees widespread use in these branches. As the ultrasound oscillations utilized in the welding procedure occur at a range of only a few micrometers at frequencies of 20–100 kHz for an overall duration of only 50–1500 ms, it is not possible to observe the compaction behavior with the bare eye. This paper focusses on investigating the oscillation behavior of the horn, the anvil, and the joining partners during the welding procedure by utilizing an array of synchronized laser vibrometers and performing welds with incrementing time stages. The oscillation data is correlated with temperature measurements in the welding zone as well as tensile testing results. Inter alia the formation of sidebands at the fundamental frequency as well as 2nd- and 3rd-order harmonics has been observed for the anvil, terminal, and wire front face when exceeding optimal weld time which would lead to maximum joint strength. Following the assumption of other research groups, the cause of these sidebands could be a change in relative motion of these components. As the terminal is slipping with increasing weld time, it could be assumed that the reason for the sidebands is low-frequency movement of the anvil, modulated onto the fundamental frequency, additionally indicating successful bonding of the stranded wire and the terminal. Furthermore, this slipping of the terminal on the anvil could lead to increased wear of the anvil knurls.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1415
Author(s):  
Wei Huang ◽  
Kailin Pan ◽  
Jian Zhang ◽  
Yubing Gong

Intermetallic compounds (IMCs) are essential in the soldering of electronic products and are composed mainly of Cu6Sn5 and Cu3Sn. They must maintain reliable mechanical and electrical connections. As they are usually only a few microns thick, and it is difficult to study their mechanical properties by traditional methods. In this study, a 100 Å × 100 Å × 100 Å polycrystal with 10 grains was created by Atomsk through Voronoi tessellation based on a Cu6Sn5 unit cell. The effects of the temperature and strain rate on the tensile properties of the polycrystalline Cu6Sn5 were analyzed based on MEAM potential function using a molecular dynamics (MD) method. The results show that Young’s modulus and ultimate tensile strength (UTS) of the polycrystalline Cu6Sn5 decrease approximately linearly with an increase in temperature. At high strain rates (0.001–100 ps−1), Young’s modulus and UTS of the Cu6Sn5 are logarithmic with respect to the strain rate, and both increase with an increase in strain rate. In addition, at low strain rates (0.00001–0.0005 ps−1), the UTS has a quadratic increase as the strain rate increases.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3220
Author(s):  
Sander Verheule ◽  
Ulrich Schotten

For both the atria and ventricles, fibrosis is generally recognized as one of the key determinants of conduction disturbances. By definition, fibrosis refers to an increased amount of fibrous tissue. However, fibrosis is not a singular entity. Various forms can be distinguished, that differ in distribution: replacement fibrosis, endomysial and perimysial fibrosis, and perivascular, endocardial, and epicardial fibrosis. These different forms typically result from diverging pathophysiological mechanisms and can have different consequences for conduction. The impact of fibrosis on propagation depends on exactly how the patterns of electrical connections between myocytes are altered. We will therefore first consider the normal patterns of electrical connections and their regional diversity as determinants of propagation. Subsequently, we will summarize current knowledge on how different forms of fibrosis lead to a loss of electrical connectivity in order to explain their effects on propagation and mechanisms of arrhythmogenesis, including ectopy, reentry, and alternans. Finally, we will discuss a histological quantification of fibrosis. Because of the different forms of fibrosis and their diverging effects on electrical propagation, the total amount of fibrosis is a poor indicator for the effect on conduction. Ideally, an assessment of cardiac fibrosis should exclude fibrous tissue that does not affect conduction and differentiate between the various types that do; in this article, we highlight practical solutions for histological analysis that meet these requirements.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012021
Author(s):  
M M M. A Kader ◽  
Z B Razali ◽  
W A Mustafa ◽  
S A Saidi ◽  
A A Nagoor Gunny ◽  
...  

Abstract This research is used to crank start automotive vehicle. There are many different system used in order to start-up vehicles using electric starter, in the time of battery low-power or totally drained. The purpose of this research is to help the driver to get out of this difficulty. Nowadays there are many people that have experienced such a bad moment, where they are stranded at road side due to malfunction starter in their car because of battery problem. Most of the vehicle electric starter failure is because of battery corrosion or battery undercharged. The importance of this research is to solve this problem. Starter is a vital part of the vehicle, without it no automotive vehicles able to operate. These starters will rotate an internal-combustion engine to initiate the engine’s operation under its own power. Starters also can be malfunction too due to corroded electrical connections or an undercharged battery. This system can be used to solve this problem. This system used human energy by using mechanical parts in order to produce electrical power. In order to produce electrical current, workforce will be applied by rotating the wheel that already linked by belt and from that rotations will trigger a magnetic force and it will produce an electrical current and supply it into battery. This system is divided into two development; hardware development and software development. The hardware development involved, mechanical device which is used and electrical device such as monitor. For software development, Fritzing is used to construct circuit.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012021
Author(s):  
Chao Zhang ◽  
Zien Zhao ◽  
Wanbin Ren

Abstract The contact spot temperature of electrical contact components substantially affects the reliability and electrical life of any electrical connections within the electrical engineering. In this paper, finite element model of typical spring structure components is built by using COMSOL Multiphysics software. Furthermore, the transient process of contact temperature is simulated by taking account of film resistance on the contact surface. Moreover, a test rig is introduced that makes it possible to measure the electrical contact resistance and temperature within the electrical contact components simultaneously. Finally, correlation between contact resistance and contact spot temperature with different contact force and current levels are investigated explicitly.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012025
Author(s):  
N S Bodrug ◽  
O V Skripko

Abstract Currently, one of the important problems for domestic energy is the replacement of an outdated fleet of equipment at substations of electric power systems (EPS). The paper addressed the issue of upgrading the "Ice" substation in part of the selection of switches, checking the reliability of switches and the reliability of the substation in general. The substation characteristic is given, the changes in the main scheme of the substation electrical connections are substantiated, switches for all substation voltages are selected according to the current short circuit currents. To assess the degree of reliability of the selected switches, the substation is determined by their probability of refusal. Based on the assessment of the likelihood of failures and other equipment for the substation, the estimated time of trouble-free operation was determined, the average time of trouble-free operation and the average substation recovery time.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5392
Author(s):  
Douglas Mills ◽  
Paul Lambert ◽  
Shengming Yang

The electrochemical noise method (ENM) has previously been employed to monitor the corrosion of steel reinforcement in concrete. The development of solid-state Ag/AgCl-based probes and dedicated monitoring technology (ProCoMeter) now offers a wider range of ENM configurations. The present study involves the laboratory investigation of three mortar samples containing steel bars and varying additions of chloride, with a view to future field application. ENM could be used to provide corrosion information on reinforcement without the need to provide direct electrical connections to the steel and without the risk or inducing or increasing corrosion. In addition to half-cell potentials, measurements were made using ENM in three different probe configurations over a total test period of 90 days. The samples were then broken open and the bars extracted and cleaned. A comparison was then made between the calculated metal thickness loss obtained from the Rn values and the actual metal thickness loss. The results showed that each configuration was able to order the results in the expected manner, with the simple single substrate (SSS) arrangement providing the best correlation with direct measurements. The study is ongoing with the intention of measurements being obtained in situ on existing reinforced concrete structures.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1095
Author(s):  
Qinggang Meng ◽  
Yulan Lu ◽  
Junbo Wang ◽  
Deyong Chen ◽  
Jian Chen

In this paper, a piezoresistive pressure sensor based on silicon on insulator (SOI) was presented, which was composed of an SOI layer with sensing elements and a glass cap for a hermetic package. Different from its conventional counterparts, the position and thickness of the four piezoresistors was optimized based on numerical simulation, which suggests that two piezoresistors at the center while the other two at the edge of the pressure-sensitive diaphragm and a thickness of 2 μm can produce the maximum sensitivity and the minimum nonlinearity. Due to the use of silicon rather than metal for electrical connections, the piezoresistive pressure sensor was fabricated in a highly simplified process. From the experimental results, the fabricated piezoresistive pressure sensor demonstrated a high sensitivity of 37.79 mV·V−1·MPa−1, a high full-scale (FS) output of 472.33 mV, a low hysteresis of 0.09% FS, a good repeatability of 0.03% FS and a good accuracy of 0.06% FS at 20 °C. A temperature coefficient of sensitivity of 0.44 mV·MPa−1·°C−1 and a low zero drift were also shown at different temperatures. The piezoresistive pressure sensor developed in this study may function as an enabling tool in pressure measurements.


Sign in / Sign up

Export Citation Format

Share Document