smart energy systems
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 102)

H-INDEX

19
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
pp. 48-64
Author(s):  
Van Nhu Nguyen ◽  
Nhu Tung Truong ◽  
Van Thinh Dinh ◽  
Viet Anh Nguyen

Climate change and fossil fuel depletion are the main reasons for many countries around the world to develop and implement energy transition strategies. Being a very clean burning fuel (generating steam only), hydrogen will play an important role in the transition from fossil energy to CO2-free energy. The paper introduces recent advances of hydrogen technology applied in transportation, industry, and power generation in the world; challenges regarding hydrogen safety and technology; barriers in social perception; and some recommendations for the development of hydrogen technology and environmentally friendly smart energy systems in Vietnam.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zahra Heidari Darani ◽  
Mohsen Taheri Demne ◽  
Darush Mohammadi Zanjirani ◽  
Ali Zackery

AbstractEmerging energy systems are inherently different from their conventional counter-parts. To address all issues of these systems, comprehensive approaches of transdisciplinary and post-normal sciences are needed. This article tries to re-conceptualize emerging energy systems using Robert Rosen’s theory of anticipatory system and introduces the concept of the anticipatory smart energy system (ASES). Three important features of an ASES are described and socio-technical considerations for realization of these features are discussed. The article also considers realization of such systems under society 5.0 paradigm and spime techno-culture. In ASESs, the identity of users evolves and new identities are created for energy users, based on the production, consumption, storage, and distributed management of energy. An Anticipatory energy system can manage a common pool of prosumaging.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012023
Author(s):  
Rajat Gupta ◽  
Johanna Morey

Abstract Smart control technologies are beginning to be deployed in homes to optimise heating and alter the timing of domestic energy demand to enable residential demand side response (DSR). This paper presents before (baseline phase) and after (control phase) evaluation of the monitored indoor temperature and energy demand during the heating season in 10 new-build dwellings, each of which received a 5kWh electro-chemical battery and smart control to enable shifting of heating energy demand. The dwellings had air source heat pumps (ASHP) and 2kWp solar photovoltaic (PV) panels, and were located in a social housing estate in Barnsley, England. For eight dwellings, heat pump electricity use per heating degree day was found to decrease by 10% and narrow baseline peaks were suppressed during the control phase. Daily mean grid electricity import and heat pump electricity use in the peak period (4pm – 7pm) were measured as 4.0 kWh and 1.4 kWh during the control phase as compared to 3.8kWh and 1.3 kWh for the baseline phase. However the use of a flat tariff (single-rate) meant that battery charging-discharging capability was not fully utilised. Time-of-use tariff would further enhance cost savings associated with the change in the timing of energy demand.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5445 ◽  
Author(s):  
Simone Ferrari ◽  
Federica Zagarella ◽  
Paola Caputo ◽  
Giuliano Dall’O’

Assessing the existing building stock’s hourly energy demand and predicting its variation due to energy efficiency measures are fundamental for planning strategies towards renewable-based Smart Energy Systems. However, the need for accurate methods for this purpose in the literature arises. The present article describes a GIS-based procedure developed for estimating the energy demand profiles of urban buildings based on the definition of the volumetric consistency of a building stock, characterized by different ages of construction and the most widespread uses, as well as dynamic simulations of a set of Building Energy Models adopting different energy-related features. The simulation models are based on a simple Building Energy Concept where selected thermal zones, representative of different boundary conditions options, are accounted. By associating the simulated hourly energy density profiles to the geo-referenced building stock and to the surveyed thermal system types, the whole hourly energy profile is estimated for the considered area. The method was tested on the building stock of Milan (Italy) and validated with the data available from the annual energy balance of the city. This procedure could support energy planners in defining urban energy demand profiles for energy policy scenarios.


2021 ◽  
Vol 4 (S3) ◽  
Author(s):  
Matteo Barsanti ◽  
Jan Sören Schwarz ◽  
Lionel Guy Gérard Constantin ◽  
Pranay Kasturi ◽  
Claudia R. Binder ◽  
...  

AbstractTo tackle the climate crisis, the European energy strategy relies on consumers taking ownership of the energy transition, accelerating decarbonisation through investments in low-carbon technologies and ensuring system stability and reliability by actively participating in the market. Therefore, tools are needed to better understand an increasingly complex and actor-dense energy system, tracking socio-technical dynamics that occur at its margins and then predicting the effects on larger scales. Yet, existing domestic energy demand models are not flexible enough to incorporate a wide range of socio-technical factors, and to be incorporated into larger energy system simulation environments. Here, a co-simulation design for domestic energy demand modeling is presented and motivated on the basis of four design principles: granularity, scalability, modularity and transparency. Microsimulation of domestic energy demand, through the Python open source library demod, shows that it is possible to achieve high detail and high temporal resolution without compromising scalability. Furthermore, mosaik, an open source co-simulation framework, makes it possible to generate, integrate and orchestrate a multitude of demod-based instances with other independent models, which for the illustrative purposes of this study are represented by a heat pump model. The authors hope that the detailed documentation of the proposed solution will encourage interdisciplinary and collaborative efforts to develop a simulation ecosystem capable of investigating alternative energy transition pathways and evaluating policy interventions through the socio-technical lens.


Sign in / Sign up

Export Citation Format

Share Document