scholarly journals New insights into the regulation of synaptic transmission and plasticity by the endoplasmic reticulum and its membrane contacts

2021 ◽  
Vol 97 (10) ◽  
pp. 559-572
Author(s):  
Masafumi TSUBOI ◽  
Yusuke HIRABAYASHI
2021 ◽  
Author(s):  
Lauren C. Panzera ◽  
Ben Johnson ◽  
In Ha Cho ◽  
Michael M. Tamkun ◽  
Michael B. Hoppa

The endoplasmic reticulum (ER) forms a continuous and dynamic network throughout a neuron, extending from dendrites to axon terminals, and axonal ER dysfunction is implicated in several neurological disorders. In addition, tight junctions between the ER and plasma membrane (PM) are formed by several molecules including Kv2 channels, but the cellular functions of many ER-PM junctions remain unknown. Dynamic Ca2+ uptake into the ER during electrical activity plays an essential role in synaptic transmission as failure to allow rapid ER Ca2+ filling during stimulation activates stromal interaction molecule 1 (STIM1) and decreases both presynaptic Ca2+ influx and synaptic vesicle exocytosis. Our experiments demonstrate that Kv2.1 channels are necessary for enabling ER Ca2+ uptake during electrical activity as genetic depletion of Kv2.1 rendered both the somatic and axonal ER unable to accumulate Ca2+ during electrical stimulation. Moreover, our experiments show that the loss of Kv2.1 in the axon impairs synaptic vesicle fusion during stimulation via a mechanism unrelated to modulation of membrane voltage. Thus, our data demonstrate that the non-conducting role of Kv2.1 in forming stable junctions between the ER and PM via ER VAMP-associated protein (VAP) binding couples ER Ca2+ uptake with electrical activity. Our results further suggest that Kv2.1 has a critical function in neuronal cell biology for Ca2+-handling independent of voltage and reveals a novel and critical pathway for maintaining ER lumen Ca2+ levels and efficient neurotransmitter release. Taken together these findings reveal an essential non-classical role for both Kv2.1 and the ER-PM junctions in synaptic transmission.


2011 ◽  
Vol 38 (1) ◽  
pp. 1-9 ◽  
Author(s):  
G. A. Velikanov ◽  
L. P. Belova ◽  
A. A. Ponomareva

Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641877551
Author(s):  
Rebecca Stanhope ◽  
Isabelle Derré

In naïve cells, the endoplasmic reticulum (ER) and the ER-resident Vesicle-associated membrane protein- Associated Proteins (VAP) are common components of sites of membrane contacts that mediate the nonvesicular transfer of lipids between organelles. There is increasing recognition that the hijacking of VAP by intracellular pathogens is a novel mechanism of host–pathogen interaction. Here, we summarize our recent findings showing that the Chlamydia inclusion membrane protein IncV tethers the ER to the inclusion membrane by binding to VAP via the molecular mimicry of two eukaryotic FFAT motifs. We extend the discussion to other microorganisms that have evolved similar mechanisms.


2016 ◽  
Vol 214 (4) ◽  
pp. 367-370 ◽  
Author(s):  
Michiel Krols ◽  
Geert Bultynck ◽  
Sophie Janssens

Endoplasmic reticulum (ER)–mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER–mitochondria contact sites, thereby affecting ER–mitochondrial calcium transfer and mitochondrial bioenergetics.


1999 ◽  
Vol 81 (6) ◽  
pp. 3054-3064 ◽  
Author(s):  
Marc R. Pelletier ◽  
Jehangir S. Wadia ◽  
Linda R. Mills ◽  
Peter L. Carlen

Seizure-induced cell death produced by repeated tetanic stimulation in vitro: possible role of endoplasmic reticulum calcium stores. Seizures may cause brain damage due to mechanisms initiated by excessive excitatory synaptic transmission. One such mechanism is the activation of death-promoting intracellular cascades by the influx and the perturbed homeostasis of Ca2+. The neuroprotective effects of preventing the entry of Ca2+ from voltage-dependent Ca2+ channels, NMDA receptors, and non-NMDA receptors, is well known. Less clear is the contribution to excitotoxicity of Ca2+ released from endoplasmic reticulum (ER) stores. We produced epileptiform discharges in combined entorhinal cortex/hippocampus slices using repeated tetanic stimulation of the Schaffer collaterals and assessed cell death after 1, 3, or 12–14 h with gel electrophoresis of genomic DNA and immunohistologically using terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine 5′-triphosphate (dUTP) nick end labeling (TUNEL) staining. We manipulated ER Ca2+ stores using two conventional drugs, dantrolene, which blocks the Ca2+ release channel, and thapsigargin, which blocks sarco-endoplasmic reticulum Ca2+-ATPases resulting in depletion of ER Ca2+stores. To monitor epileptogenesis, and to assess effects attributable to dantrolene and thapsigargin on normal synaptic transmission, extracellular potentials were recorded in stratum pyramidale of the CA1 region. Repeated tetanic stimulation reliably produced primary afterdischarge and spontaneous epileptiform discharges, which persisted for 14 h, the longest time recorded. We did not observe indications of cell death attributable to seizures with either method when assessed after 1 or 3 h; however, qualitatively more degraded DNA always was observed in tetanized slices from the 12- to 14-h group compared with time-matched controls. Consistent with these data was a significant, fourfold, increase in the percentage of TUNEL-positive cells in CA3, CA1, and entorhinal cortex in tetanized slices from the 12- to 14-h group (16.5 ± 4.4, 33.7 ± 7.1, 11.6 ± 2.1, respectively; means ± SE; n = 7) compared with the appropriate time-matched control (4.1 ± 2.2, 7.3 ± 2.0, 2.8 ± 0.9, respectively; n = 6). Dantrolene (30 μM; n = 5) and thapsigargin (1 μM; n = 4) did not affect significantly normal synaptic transmission, assessed by the amplitude of the population spike after 30 min of exposure. Dantrolene and thapsigargin also were without effect on the induction or the persistence of epileptiform discharges, but both drugs prevented seizure-induced cell death when assessed with gel electrophoresis. We suggest that Ca2+entering a cell from the outside, in addition to the Ca2+contributed from ryanodine-sensitive stores (i.e., Ca2+-induced Ca2+ release), may be necessary for seizure-induced cell death.


2017 ◽  
Vol 114 (24) ◽  
pp. E4859-E4867 ◽  
Author(s):  
Yumei Wu ◽  
Christina Whiteus ◽  
C. Shan Xu ◽  
Kenneth J. Hayworth ◽  
Richard J. Weinberg ◽  
...  

Close appositions between the membrane of the endoplasmic reticulum (ER) and other intracellular membranes have important functions in cell physiology. These include lipid homeostasis, regulation of Ca2+ dynamics, and control of organelle biogenesis and dynamics. Although these membrane contacts have previously been observed in neurons, their distribution and abundance have not been systematically analyzed. Here, we have used focused ion beam-scanning electron microscopy to generate 3D reconstructions of intracellular organelles and their membrane appositions involving the ER (distance ≤30 nm) in different neuronal compartments. ER–plasma membrane (PM) contacts were particularly abundant in cell bodies, with large, flat ER cisternae apposed to the PM, sometimes with a notably narrow lumen (thin ER). Smaller ER–PM contacts occurred throughout dendrites, axons, and in axon terminals. ER contacts with mitochondria were abundant in all compartments, with the ER often forming a network that embraced mitochondria. Small focal contacts were also observed with tubulovesicular structures, likely to be endosomes, and with sparse multivesicular bodies and lysosomes found in our reconstructions. Our study provides an anatomical reference for interpreting information about interorganelle communication in neurons emerging from functional and biochemical studies.


Sign in / Sign up

Export Citation Format

Share Document