scholarly journals Role of Bone Mineral and Organic Matrix in Induction of Osteoclastic Bone Resorption.

1992 ◽  
Vol 36 (5) ◽  
pp. 1148-1161
Author(s):  
Mikio Takeuchi
2018 ◽  
Vol 9 ◽  
Author(s):  
Brendan F. Boyce ◽  
Jinbo Li ◽  
Lianping Xing ◽  
Zhenqiang Yao

1968 ◽  
Vol 39 (3) ◽  
pp. 676-697 ◽  
Author(s):  
Gilbert Vaes

Bone resorption, characterized by the solubilization of both the mineral and the organic components of the osseous matrix, was obtained in tissue culture under the action of parathyroid hormone (PTH). It was accompanied by the excretion of six lysosomal acid hydrolases, which was in good correlation with the progress of the resorption evaluated by the release of phosphate, calcium 45 or hydroxyproline from the explants; there was no increased excretion of two nonlysosomal enzymes, alkaline phosphatase, and catalase. Balance studies and experiments with inhibitors of protein synthesis indicated that the intracellular stores of the acid hydrolases excreted were maintained by new synthesis. The release was not due to a direct disruption of the lysosomal membrane by PTH; it is presumed to result from an exocytosis of the whole lysosomal content and to involve mechanisms similar to those controlling the secretion of this content into digestive vacuoles. The resorbing explants acidified their culture fluids at a faster rate and released more lactate and citrate than the controls; this release was in good correlation, in the PTH-treated cultures, with the resorption of the bone mineral, but the amount of citrate released was considerably smaller than that of lactate. The acid released could account for the resorption of the mineral. It is proposed, as a working hypothesis, that the acid hydrolases of the lysosomes are active in the resorption of the organic matrix of bone and that acid, originating possibly from the stimulation of glycolysis, cares for the concomitant solubilization of bone mineral while also favoring the hydrolytic action of the lysosomal enzymes.


2006 ◽  
Vol 24 (5) ◽  
pp. 368-372 ◽  
Author(s):  
Takuma Matsubara ◽  
Akira Myoui ◽  
Fumiyo Ikeda ◽  
Kenji Hata ◽  
Hideki Yoshikawa ◽  
...  

1995 ◽  
Vol 207 (1) ◽  
pp. 280-287 ◽  
Author(s):  
T.J. Hall ◽  
M. Schaeublin ◽  
H. Jeker ◽  
K. Fuller ◽  
T.J. Chambers

2021 ◽  
Vol 22 (13) ◽  
pp. 6934
Author(s):  
Anh Chu ◽  
Ralph A. Zirngibl ◽  
Morris F. Manolson

This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.


2005 ◽  
Vol 25 (12) ◽  
pp. 5253-5269 ◽  
Author(s):  
Nathan J. Pavlos ◽  
Jiake Xu ◽  
Dietmar Riedel ◽  
Joyce S. G. Yeoh ◽  
Steven L. Teitelbaum ◽  
...  

ABSTRACT Rab3 proteins are a subfamily of GTPases, known to mediate membrane transport in eukaryotic cells and play a role in exocytosis. Our data indicate that Rab3D is the major Rab3 species expressed in osteoclasts. To investigate the role of Rab3D in osteoclast physiology we examined the skeletal architecture of Rab3D-deficient mice and found an osteosclerotic phenotype. Although basal osteoclast number in null animals is normal the total eroded surface is significantly reduced, suggesting that the resorptive defect is due to attenuated osteoclast activity. Consistent with this hypothesis, ultrastructural analysis reveals that Rab3D−/− osteoclasts exhibit irregular ruffled borders. Furthermore, while overexpression of wild-type, constitutively active, or prenylation-deficient Rab3D has no significant effects, overexpression of GTP-binding-deficient Rab3D impairs bone resorption in vitro. Finally, subcellular localization studies reveal that, unlike wild-type or constitutively active Rab3D, which associate with a nonendosomal/lysosomal subset of post-trans-Golgi network (TGN) vesicles, inactive Rab3D localizes to the TGN and inhibits biogenesis of Rab3D-bearing vesicles. Collectively, our data suggest that Rab3D modulates a post-TGN trafficking step that is required for osteoclastic bone resorption.


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S308
Author(s):  
S.H. Madsen ◽  
A.C. Bay-Jensen ◽  
A. Goettrup ◽  
G. Thomsen ◽  
K. Henriksen⁎ ◽  
...  

1985 ◽  
Vol 76 (1) ◽  
pp. 155-165 ◽  
Author(s):  
T.J. Chambers ◽  
K. Fuller

The cell-free endocranial surface of young adult rat parietal bones was used as a substrate for osteoclastic bone resorption, either without prior treatment, or after incubation of the parietal bones with collagenase or neonatal rat calvarial cells. Untreated, the endocranial surface consisted of unmineralized organic fibres; incubation with calvarial cells or collagenase caused disruption and removal of these fibres, with extensive exposure of bone mineral on the endocranial surface, without morphologically detectable mineral dissolution. Neonatal rabbit osteoclasts resorbed bone to a greater extent from parietal bones pre-incubated with calvarial cells or collagenase than from untreated bones; mineral exposure and subsequent osteoclastic resorption were both increased if calvarial cells were incubated with parathyroid hormone; removal of bone mineral after incubation with calvarial cells removed the predisposition to osteoclastic resorption. These experiments demonstrate that calvarial cells are capable of osteoid destruction, and indicate that one mechanism by which osteoblasts induce osteoclastic bone resorption may be through digestion of the unmineralized organic material that covers bone surfaces, to expose the underlying resorption-stimulating bone mineral to osteoclastic contact.


Sign in / Sign up

Export Citation Format

Share Document