trafficking pathway
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 46)

H-INDEX

43
(FIVE YEARS 5)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 289
Author(s):  
Jie Li ◽  
Yanzhuang Wang

The Golgi apparatus is a membrane organelle located in the center of the protein processing and trafficking pathway. It consists of sub-compartments with distinct biochemical compositions and functions. Main functions of the Golgi, including membrane trafficking, protein glycosylation, and sorting, require a well-maintained stable microenvironment in the sub-compartments of the Golgi, along with metal ion homeostasis. Metal ions, such as Ca2+, Mn2+, Zn2+, and Cu2+, are important cofactors of many Golgi resident glycosylation enzymes. The homeostasis of metal ions in the secretory pathway, which is required for proper function and stress response of the Golgi, is tightly regulated and maintained by transporters. Mutations in the transporters cause human diseases. Here we provide a review specifically focusing on the transporters that maintain Golgi metal ion homeostasis under physiological conditions and their alterations in diseases.


2022 ◽  
Author(s):  
Camilla Godlee ◽  
Ondrej Cerny ◽  
Mei Liu ◽  
Samkeliso Blundell ◽  
Alanna E. Gallagher ◽  
...  

SteD is a transmembrane effector of the Salmonella SPI-2 type III secretion system that inhibits T cell activation by reducing the amounts of at least three proteins – major histocompatibility complex II (MHCII), CD86 and CD97 – from the surface of antigen-presenting cells. SteD specifically localises at the trans -Golgi network (TGN) and MHCII compartments; however, the targeting, membrane integration and trafficking of SteD are not understood. Using systematic mutagenesis, we identify distinct regions of SteD that are required for these processes. We show that SteD integrates into membranes of the ER/Golgi through a two-step mechanism of membrane recruitment from the cytoplasm followed by integration. SteD then migrates to and accumulates within the TGN. From here it hijacks the host adaptor protein (AP)1-mediated trafficking pathway from the TGN to MHCII compartments. AP1 binding and post-TGN trafficking require a short sequence in the N-terminal cytoplasmic tail of SteD that resembles the AP1-interacting dileucine sorting signal, but in inverted orientation, suggesting convergent evolution.


Author(s):  
Ayca Dilruba Aslanger ◽  
Beyza Goncu ◽  
Omer Faruk Duzenli ◽  
Emrah Yucesan ◽  
Esma Sengenc ◽  
...  

2021 ◽  
Vol 574 ◽  
pp. 97-103
Author(s):  
Takahito Moriyama ◽  
Fumio Hasegawa ◽  
Yoei Miyabe ◽  
Kenichi Akiyama ◽  
Kazunori Karasawa ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2022
Author(s):  
Ankit Shroff ◽  
Taras Y. Nazarko

Coronavirus disease 2019 (COVID-19), caused by a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has instantaneously emerged as a worldwide pandemic. However, humans encountered other coronaviruses in the past, and they caused a broad range of symptoms, from mild to life-threatening, depending on the virus and immunocompetence of the host. Most human coronaviruses interact with the proteins and/or double-membrane vesicles of autophagy, the membrane trafficking pathway that degrades and recycles the intracellular protein aggregates, organelles, and pathogens, including viruses. However, coronaviruses often neutralize and hijack this pathway to complete their life cycle. In this review, we discuss the interactions of human coronaviruses and autophagy, including recent data from SARS-CoV-2-related studies. Some of these interactions (for example, viral block of the autophagosome–lysosome fusion), while being conserved across multiple coronaviruses, are accomplished via different molecular mechanisms. Therefore, it is important to understand the molecular interplay between human coronaviruses and autophagy for developing efficient therapies against coronaviral diseases.


Sign in / Sign up

Export Citation Format

Share Document