vesicular trafficking
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 146)

H-INDEX

53
(FIVE YEARS 7)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Massimo Venditti ◽  
Sergio Minucci

The identification and characterization of new proteins involved in spermatogenesis is fundamental, considering that good-quality gametes are basic in ensuring proper reproduction. Here, we further analyzed the temporal and spatial localization during the first spermatogenic wave of rat testis of EHBP1L1, which is involved in vesicular trafficking due to the CH and bMERB domains, which bind to actin and Rab8/10, respectively. Western blot and immunofluorescence analyses showed that EHBP1L1 protein expression started at 21 days post-partum (dpp) concomitantly with the appearance of primary spermatocytes (I SPC). In subsequent stages, EHBP1L1 specifically localized together with actin in the perinuclear cytoplasm close to the acrosomal and Golgian regions of spermatids (SPT) during the different phases of acrosome biogenesis (AB). Moreover, it was completely absent in elongated SPT and in mature spermatozoa, suggesting that its role was completed in previous stages. The combined data, also supported by our previous report demonstrating that EHBP1L1 mRNA was expressed by primary (I) and secondary (II) SPC, lead us to hypothesize its specific role during AB. Although these results are suggestive, further studies are needed to better clarify the underlying molecular mechanisms of AB, with the aim to use EHBP1L1 as a potential new marker for spermatogenesis.


Author(s):  
Carlos Enrich ◽  
Albert Lu ◽  
Francesc Tebar ◽  
Carles Rentero ◽  
Thomas Grewal

Membrane contact sites (MCS) are specialized small areas of close apposition between two different organelles that have led researchers to reconsider the dogma of intercellular communication via vesicular trafficking. The latter is now being challenged by the discovery of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave rise to a new concept that implicates cell compartments not to function as individual and isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic platforms, crucial for cellular homeostasis. In this context, well-known as well as novel proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or transient MCS companions with yet unknown functions. Intriguingly, we and others uncovered metabolic alterations in cell-based disease models that perturbed MCS size and numbers between coupled organelles such as endolysosomes, the endoplasmic reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency of certain proteins in this narrow 10–30 nm membrane contact zone can enable MCS formation to either rescue compromised MCS function, or in certain disease settings trigger undesired metabolite transport. In this “Mini Review” we summarize recent findings regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics and functioning. Their contribution to novel pathways related to MCS biology will provide new insights relevant for a number of human diseases and offer opportunities to design innovative treatments in the future.


2022 ◽  
Author(s):  
Nan Zhang ◽  
Hongjie Zhang ◽  
Liakot A Khan ◽  
Gholamali Jafari ◽  
Yong Eun ◽  
...  

In prevailing epithelial polarity models, membrane-based polarity cues (e.g., the partitioning-defective PARs) position apicobasal cellular membrane domains. Intracellular vesicular trafficking expands these domains by sorting apicobasal cargo towards them. How the polarity cues are polarized and how sorting confers long-range vesicle directionality is still unclear. Here, a systems-based approach using two-tiered C. elegans genomics-genetics screens identifies trafficking molecules that are not implicated in apical sorting yet polarize apical membrane and PAR complex components. Live tracking of polarized membrane biogenesis suggests that the biosynthetic-secretory pathway, linked to recycling routes, is asymmetrically oriented towards the apical domain during its biosynthesis, upstream of PARs and independent of polarized target domains. This mode of membrane polarization could offer solutions to questions of current models of polarity and polarized trafficking.


Endocrinology ◽  
2021 ◽  
Author(s):  
Ian M Williams ◽  
David H Wasserman

Abstract The rate limiting step for skeletal muscle glucose uptake is transport from microcirculation to muscle interstitium. Capillary endothelium poses a barrier that delays the onset of muscle insulin action. Defining physiological barriers that control insulin access to interstitial space is difficult due to technical challenges that confront study of microscopic events in an integrated physiological system. Two physiological variables determine muscle insulin access. These are the number of perfused capillaries and the permeability of capillary walls to insulin. Disease states associated with capillary rarefaction are closely linked to insulin resistance. Insulin permeability through high resistant capillary walls of muscle poses a significant barrier to insulin access. Insulin may traverse the endothelium through narrow intercellular junctions or vesicular trafficking across the endothelial cell. Insulin is large compared to intercellular junctions making this an unlikely route. Transport by endothelial vesicular trafficking is likely the primary route of transit. Studies in vivo show movement of insulin is not insulin receptor-dependent. This aligns with single cell transcriptomics that show the insulin receptor is not expressed in muscle capillaries. Work in cultured endothelial cell lines suggest that insulin receptor activation is necessary for endothelial insulin transit. Controversies remain in the understanding of trans-endothelial insulin transit to muscle. These controversies closely align with experimental approaches. Control of circulating insulin accessibility to skeletal muscle is an area that remains ripe for discovery. Factors that impede insulin access to muscle may contribute to disease and factors that accelerate access may be of therapeutic value for insulin resistance.


Author(s):  
Pascal F. Egea

Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several “model” MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.


2021 ◽  
Author(s):  
Annie Lauzier ◽  
Marie-France Bossanyi ◽  
Raphaëlle Larcher ◽  
Sonya Nassari ◽  
Rupali Ugrankar ◽  
...  

Macroautophagy, the degradation and recycling of cytosolic components in the lysosome, is an important cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs impact autophagy. To improve our understanding of their functions in vivo, we screened all Drosophila SNXs using inducible RNA interference in the fat body. Significantly, depletion of snazarus (snz) led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with snz depletion, and snz's roles were conserved in human cells. SNX25, the closest human ortholog to snz, regulates both VAMP8 endocytosis and lipid metabolism. Through knockout-rescue experiments, we demonstrate that these activities are dependent on specific SNX25 domains and that the autophagic defects upon SNX25 loss can be rescued by ethanolamine addition. We also demonstrate the presence of differentially spliced forms of SNX14 and SNX25 in cancer cells. This work identifies a conserved role for snz/SNX25 as regulators of autophagic flux and reveals differential isoform expression between paralogs.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3275
Author(s):  
Zinia D’Souza ◽  
Farhana Taher Sumya ◽  
Amrita Khakurel ◽  
Vladimir Lupashin

The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.


2021 ◽  
Author(s):  
Cristina Bosmani ◽  
Angélique Perret ◽  
Florence Leuba ◽  
Aurélie Guého ◽  
Nabil Hanna ◽  
...  

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, manipulates the host phagosome maturation pathway to replicate intracellularly. Mycobacterium marinum, a closely-related species, and Dictyostelium discoideum, a social amoeba and alternative phagocytic host, have been used as models to study host-pathogen interactions occurring during mycobacterial infections. Vacuolins, functional homologues of the mammalian flotillins, organize membrane microdomains and play a role in vesicular trafficking. Various pathogens have been reported to manipulate their membrane association and function. During infection of D. discoideum with M. marinum, Vacuolin C was specifically and highly induced and all three vacuolin isoforms were enriched at the mycobacteria-containing-vacuole (MCV). In addition, absence of vacuolins reduced escape from the MCV and conferred resistance to M. marinum infection. Moreover, ESAT-6, the membrane-disrupting virulence factor of M. marinum, was less associated with membranes when vacuolins were absent. Together, these results suggest that vacuolins are important host factors that are manipulated by mycobacteria to inflict membrane damage and escape from their compartment.


Author(s):  
Jana Krosl ◽  
Marie-Eve Bordeleau ◽  
Céline Moison ◽  
Tara MacRae ◽  
Isabel Boivin ◽  
...  

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Priyam Banerjee ◽  
Guan-Yu Xiao ◽  
Xiaochao Tan ◽  
Veronica J. Zheng ◽  
Lei Shi ◽  
...  

AbstractEpithelial-to-mesenchymal transition (EMT) is a transcriptionally governed process by which cancer cells establish a front-rear polarity axis that facilitates motility and invasion. Dynamic assembly of focal adhesions and other actin-based cytoskeletal structures on the leading edge of motile cells requires precise spatial and temporal control of protein trafficking. Yet, the way in which EMT-activating transcriptional programs interface with vesicular trafficking networks that effect cell polarity change remains unclear. Here, by utilizing multiple approaches to assess vesicular transport dynamics through endocytic recycling and retrograde trafficking pathways in lung adenocarcinoma cells at distinct positions on the EMT spectrum, we find that the EMT-activating transcription factor ZEB1 accelerates endocytosis and intracellular trafficking of plasma membrane-bound proteins. ZEB1 drives turnover of the MET receptor tyrosine kinase by hastening receptor endocytosis and transport to the lysosomal compartment for degradation. ZEB1 relieves a plus-end-directed microtubule-dependent kinesin motor protein (KIF13A) and a clathrin-associated adaptor protein complex subunit (AP1S2) from microRNA-dependent silencing, thereby accelerating cargo transport through the endocytic recycling and retrograde vesicular pathways, respectively. Depletion of KIF13A or AP1S2 mitigates ZEB1-dependent focal adhesion dynamics, front-rear axis polarization, and cancer cell motility. Thus, ZEB1-dependent transcriptional networks govern vesicular trafficking dynamics to effect cell polarity change.


Sign in / Sign up

Export Citation Format

Share Document