scholarly journals Спектральные характеристики и перенос энергии Ce-=SUP=-3+-=/SUP=-->Tb-=SUP=-3+-=/SUP=-->Eu-=SUP=-3+-=/SUP=- в соединении LuBO-=SUB=-3-=/SUB=-(Ce, Tb, Eu)

2022 ◽  
Vol 64 (1) ◽  
pp. 105
Author(s):  
С.З. Шмурак ◽  
В.В. Кедров ◽  
А.П. Киселев ◽  
Т.Н. Фурсова ◽  
И.И. Зверькова

The structure, IR, luminescence, and luminescence excitation spectra of Ce3+, Tb3+, and Eu3+ ions in Lu1−2xCexEuхBO3 and Lu0.91−2xCexTb0.09EuхBO3 solid solutions were studied. The minimum "threshold" distance between Ce3+ and Eu3+ ions was estimated, at which there is no charge transfer between these ions, leading to the quenching of Ce3+ and Eu3+ luminescence. It is shown that in Lu0.91−2xCexTb0.09EuхBO3 compounds, the range of Ce and Eu concentrations of 0.2 – 0.25 at. % is optimal for obtaining the maximum luminous intensity of this compound.

Author(s):  
Kaitao Yu ◽  
Lifang Wei ◽  
Jiaqi Shen

The series of luminescent materials of Eu3 +, Tb3 + doped Li2SrSiO4 were synthesized by a high-temperature solid-state method. The phase purity of the samples was measured by X-ray powder diffraction (XRD). The luminescent properties of the samples were studied by UV-visible excitation spectra and emission spectra The It is found that the strong absorption of Eu3 + doped Li2-xSr1-xEuxSiO4 is from the 250 ~ 290 nm charge transfer band of Eu3 + and the 7F0 → 5L6 absorption transition of 393 nm. The strongest emission of the emission spectra at 393 nm is 614 nm and 701 nm, respectively, from the 5D0 → 7F2 and 5D0 → 7F4 transitions of Eu3 +. Tb3 + doped sample Li2-xSr1-xTb xSiO4 excitation spectrum is mainly composed of Tb3 + ion fd transition and charge transfer band composed of broadband, the strongest absorption at 269 nm, the emission of the main emission of 5D4 → 7F5 transition (542 nm).


2014 ◽  
Vol 1052 ◽  
pp. 203-206
Author(s):  
Zhi Long Wang ◽  
Shi Qin Wang ◽  
Nin Yao ◽  
Xing Min Wei

(Gd,La)2-x O2CO3:Eux3+(0.01 ≤x≤0.04) were synthesized via a flux method at 400°C, and their photoluminescence properties under vacuum ultraviolet (VUV) excitation were examined. The excitation spectra showed two bands in the region from 125 nm to 300 nm, the first band centered at 190 nm was ascribed to absorption of related CO32- complex, and the second broad band centered at 246nm and 278nm in Gd2O2CO3:Eu3+ was ascribed to the charge transfer band of O2-→ Eu3+. Series samples exhibited red emission at around 611 nm under vacuum ultraviolet excitation corresponding to the 5D0→ 7F2.transition of Eu3+.


2020 ◽  
Vol 32 (16) ◽  
pp. 6892-6897
Author(s):  
Hajime Yamamoto ◽  
Kaoru Toda ◽  
Yuki Sakai ◽  
Takumi Nishikubo ◽  
Ikuya Yamada ◽  
...  

2013 ◽  
Vol 200 ◽  
pp. 186-192 ◽  
Author(s):  
Oksana Chukova ◽  
Sergiy G. Nedilko ◽  
Sergiy A. Nedilko ◽  
Vasyl Sherbatsky ◽  
Tetiana Voitenko

Luminescence properties of the two series of the La1-xEuxVO4 (x ranges from to 0.3) solid solutions synthesized by the solid state and co-precipitation methods were investigated.. Luminescence spectra of the investigated samples consist of narrow spectral lines caused by inner f - f electron transitions in the impurity Eu3+ ions. Excitation spectra consist of three main bands those correspond to different types of transitions in the investigated matrices. There are O - Eu3+ charge transfer transitions, band-to-band transitions in the matrix of the vanadate compounds and electron transitions in the VO43- vanadate anion. Dependences of the structure and luminescence properties on rate compositions and method of synthesis were studied. Origins of the observed differences between luminescence characteristics of the samples obtained by two different methods are discussed.


2002 ◽  
Vol 82 (4) ◽  
pp. 841-855 ◽  
Author(s):  
T. Mitchell ◽  
S. Diplas ◽  
P. Tsakiropoulos ◽  
J. F. Watts ◽  
J. A. D. Matthew

2008 ◽  
Vol 8 (3) ◽  
pp. 1443-1448 ◽  
Author(s):  
Qingyu Meng ◽  
Baojiu Chen ◽  
Xiaoxia Zhao ◽  
Xiaojun Wang ◽  
Wu Xu

Y2O3:Ln3+ (Ln = Eu or Tb) nanocrystals with different Ln3+ doping concentrations and average sizes were prepared by chemical self-combustion. The corresponding bulk materials with various doping concentrations were obtained by annealing the nanomaterials at high temperature. The emission spectra, excitation spectra, and X-ray diffraction spectra were used in this study. It was found that the charge transfer band of Y2O3:Eu3+ red-shifted as particle size decreased, and the charge transfer band in the 5-nm particles obviously broadened toward the long wavelength. It was also found that the profile of excitation spectra corresponding to the 4f5d (4f8 → 4f75d1) transition changed a lot with the variation of the particle size. The dependence of the excitation spectra of Y2O3:Ln3+ on particle size was investigated.


Sign in / Sign up

Export Citation Format

Share Document