luminescence spectra
Recently Published Documents


TOTAL DOCUMENTS

1296
(FIVE YEARS 196)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
I. Abbasov ◽  
M. Musayev ◽  
D. Askerov ◽  
J. Huseynov ◽  
E. Gavrishuk ◽  
...  

In the given paper, the temperature dependences ([Formula: see text]–300 K) of the green band intensity at wavelengths [Formula: see text] nm and [Formula: see text] nm have been measured and observed, respectively, from the polished and unpolished surface (PS and unPS) of a polycrystalline CVD (chemical vapor deposition) ZnSe sample upon excitation by X-ray quanta ([Formula: see text]. In both cases, the activation energy of thermal quenching has been determined, and the reasons for thermal quenching have been considered in detail. Along with XRL spectra analysis, the temperature behavior of the green band observed upon excitation by an ultraviolet (UV) laser (He–Cd, [Formula: see text] nm) from the PS and unPS in the temperature range [Formula: see text]–200 K has been discussed in more detail.


2022 ◽  
Author(s):  
Nicolaj Kofod ◽  
Maria Storm Thomsen ◽  
Patrick Nawrocki ◽  
Thomas Just Sørensen

Lanthanides are found in critical applications from display technology to renewable energy. Often these rare earth elements are used as alloys or functional materials, yet the access to them are trough solution processes. In aqueous solution the rare earths are found predominantly as trivalent ions and charge balance dictates that counter ions are present. The fast ligand exchange and lack of directional bonding in lanthanides complexes has led to questions regarding the speciation of Ln3+ solvates in the presence of various counter ions, and to the distinction between innocent = non-coordinating, and non-innocent = coordinating counter ions. There is limited agreement as to which counter ions that belong to each group, which lead to this report. By using Eu3+ luminescence, it was possible to clearly distinguish between coordinating and non-coordinating ions. To interpret the results it was required to bridge the descriptions of ion pairing and coordination. The da-ta—in form of Eu3+ luminescence spectra and luminescence lifetimes from solutions with varying concentrations of acetate, chloride, nitrate, fluoride, sulfate, perchlorate and triflate—were contrasted to those obtained with ethylenediaminetet-raaceticacid (EDTA), which allowed for the distinction between three Ln3+-anion interaction types. It was possible to con-clude which counter ions are truly innocent (e.g. ClO4- and OTf-), and which clearly coordinate (e.g. NO3- and AcO-). Finally, the considerate amount of data from systems studied under similar conditions allowed the minimum perturbation arising from inner sphere or outer sphere coordination in Eu3+ complexes to be identified.


2022 ◽  
Vol 130 (2) ◽  
pp. 300
Author(s):  
А.С. Шишов ◽  
А.Г. Мирочник

The interaction of tris-dibenzoylmethanate Eu(III) with dimethylamine and ammonia vapors was investigated. It was found that when vapors of aqueous solutions of analytes are exposed to tris-dibenzoylmethanate Eu(III) impregnated into the SiO2 matrix, an optical response is observed in the form of an increase in the luminescence intensity of Eu(III). Changes in the luminescence spectra and luminescence excitation of this sensor are analyzed, both under the quenching action of water vapor and under the sensitizing action of analyte vapors. The main points recorded in the excitation spectra are noted, which are important for understanding the processes occurring in the near environment of the lanthanide center. The luminescent chemosensor is promising for creating sensors for detecting ammonia and amines in food safety control and environmental monitoring. Shishov A.S., Mirochnik A.G.


2022 ◽  
Vol 130 (1) ◽  
pp. 146
Author(s):  
К.Р. Каримуллин ◽  
А.И. Аржанов ◽  
Н.В. Суровцев ◽  
А.В. Наумов

The temperature-dependent luminescence spectra were analyzed to determine the parameters of the electron-phonon interaction (Huang-Rhys factor and the average phonon energy) for nanocomposites with colloidal CdSe/CdS/ZnS quantum dots (deposited on the surface of a glass substrate and embedded in a thin polymer film of polyisobutylene, and in a frozen colloidal solution in toluene). The measured values of the parameters are analyzed in comparison with model calculations and data obtained using the low-frequency Raman spectroscopy. It is found that in the case of a vitrified colloidal solution of quantum dots in toluene, the matrix effect leads to a noticeable change in the parameters of the electron-phonon interaction.


2022 ◽  
Vol 130 (2) ◽  
pp. 237
Author(s):  
А.Г. Мирочник ◽  
Е.В. Федоренко ◽  
А.Ю. Белолипцев

The processes of the formation of J-aggregates during the dissolution 2,2-difluoro-4,6-di(4’-methylphenyl)-1,3,2-dioxaborine crystals (1) and their subsequent dissociation have been studied by absorption and luminescence spectroscopy and quantum-chemical modeling. It is shown that two luminescent centers are observed in the solution 1: monomeric luminescence and luminescence of J-aggregates (dual luminescence). Evolution of absorption, luminescence excitation and luminescence spectra is observed over time, indicating a slow dissociation of J-aggregates.


2022 ◽  
Vol 130 (1) ◽  
pp. 75
Author(s):  
Е.П. Чукалина ◽  
Т.А. Иголкина ◽  
Д.Н. Каримов

We report on the high-resolution Fourier spectroscopy study of KY3F10:Pr3+ crystals. The analysis of the transmission and luminescence spectra allowed us to refine and supplement the information on the crystal-field levels of the Pr3+ ion. The value of the hyperfine splitting of the ground state of Pr3+ in the KY3F10 cubic matrix is estimated. The observed shape of the spectral lines indicates the presence of defects in the sample under study.


2022 ◽  
Vol 43 (01) ◽  
pp. 58-68
Author(s):  
Pei-xin GAO ◽  
◽  
Peng DONG ◽  
Ze-yun ZHOU ◽  
Xiao-juan ZHANG ◽  
...  

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 183
Author(s):  
Krzysztof Lyczko ◽  
Monika Lyczko ◽  
Marzena Banasiewicz ◽  
Karolina Wegrzynska ◽  
Anna Ziółko ◽  
...  

Synthesis, single-crystal X-ray determination diffraction and FT-IR, NMR (1H, 13C, 19F and 205Tl), UV–vis, and luminescence spectra characteristics were described for series of thallium(I) compounds: thallium(I) triflate (Tl(OTf)), 1:1 co-crystals of thallium(I) triflate and tropolone (Htrop), Tl(OTf)·Htrop, as well as simple thallium(I) chelates: Tl(trop) (1), Tl(5-metrop) (2), Tl(hino) (3), with Htrop, 5-methyltropolone (5-meHtrop), 4-isopropyltropolone (hinokitiol, Hhino), respectively, and additionally more complex {Tl@[Tl(hino)]6}(OTf) (4) compound. Comparison of their antimicrobial activity with selected lead(II) and bismuth(III) analogs and free ligands showed that only bismuth(III) complexes demonstrated significant antimicrobial activity, from two- to fivefold larger than the free ligands.


2021 ◽  
Vol 0 (4) ◽  
pp. 16-21
Author(s):  
B.M. GAREEV ◽  
◽  
A.M. ABDRAKHMANOV ◽  
G.L. SHARIPOV ◽  
◽  
...  

The article is devoted to an example of the sonoluminescence spectroscopy use, which was previously known as a method for analyzing substances from the characteristic spectra of their sonoluminescence only in true solutions, for carrying out a similar analysis of substances contained in insoluble nanoparticles in colloidal suspensions. The solutions sonolysis, that is, their irradiation with ultrasound, is accompanied by the formation of cavitation bubbles that vibrate radially at the frequency of the ultrasonic field. Volatile components of the solution enter the bubbles, evaporating from the liquid-gas interface; nonvolatile components can penetrate into the bubble as a result of the injection of solution nanodroplets into the gas phase, which occurs during intense bubble movements accompanied by their deformation. In a nonequilibrium plasma periodically forming in cavitation bubbles, destruction occurs, as well as collisional excitation of these components, followed by luminescence. It has been shown that this mechanism of sonoluminescence also operates in colloidal suspensions, where substances are present in the form of nanoparticles with sizes less than 50 nm. Such nanoparticles penetrate into moving cavitation bubbles, without destroying them, as part of nanodroplets, and then undergo decomposition in bubble plasma with the excited particles generation as emitters of characteristic sonoluminescence. In this work, we synthesized colloidal suspensions in dodecane of porous SiO2 nanoparticles containing adsorbed Ru(bpy)3Cl2 and CuSO4 salts. During moving single-bubble sonolysis for these suspensions, characteristic emission spectra of Ru and Cu atoms, SiO molecules, and Ru(bpy)3 ions suitable for sonoluminescence spectroscopic analysis were recorded. By comparing the experimental and calculated (at different temperatures) luminescence spectra of Ru atoms, we estimated the electron temperature attained upon acoustic compression of single bubble in colloidal suspension in dodecane: Te = 7000 K.


2021 ◽  
Vol 5 (4) ◽  
pp. 218-228
Author(s):  
L. N. Myasnikova ◽  
A. G. Maratova ◽  
K. Sh. Shunkeyev

This paper studies deformation-stimulated features of radiative relaxation of self-trapped excitons and recombination assembly of exciton-like luminescence in RbI crystal. Methods of research were luminescence and thermal activation spectroscopy. The identity of the mechanism of manifestation of the X-ray luminescence, tunnel luminescence and thermally stimulated luminescence spectra were found in the elastically deformed RbI crystal, interpreted by the luminescence of self-trapped exciton, tunnel recharge of F′, VK -pairs and thermally stimulated recombination of e−, VK -centres, respectively.The temperatures of the maximum destruction peaks of thermally stimulated luminescence, their spectral composition and activation energies were determined experimentally, on the basis of which the mechanisms of recombination assembly of exciton-like luminescences in a RbI crystal were interpreted. Uniaxial elastic deformation leads to the effective formation of point radiation defects ( F′, HA, VK -centers) in comparison with an unbroken lattice, where the predominant mechanism is the association of interstitial atoms ( H -centres) with the formation of I3−-centres.


Sign in / Sign up

Export Citation Format

Share Document