scholarly journals Analytical and numerical solutions for the time and space-symmetric fractional diffusion equation

2009 ◽  
Vol 50 ◽  
pp. 800 ◽  
Author(s):  
Qianqian Yang ◽  
Ian Turner ◽  
Fawang Liu
2019 ◽  
Vol 37 (2) ◽  
pp. 730-752 ◽  
Author(s):  
Jufeng Wang ◽  
Fengxin Sun

Purpose This paper aims to present an interpolating element-free Galerkin (IEFG) method for the numerical study of the time-fractional diffusion equation, and then discuss the stability and convergence of the numerical solutions. Design/methodology/approach In the time-fractional diffusion equation, the time fractional derivatives are approximated by L1 method, and the shape functions are constructed by the interpolating moving least-squares (IMLS) method. The final system equations are obtained by using the Galerkin weak form. Because the shape functions have the interpolating property, the unknowns can be solved by the iterative method after imposing the essential boundary condition directly. Findings Both theoretical and numerical results show that the IEFG method for the time-fractional diffusion equation has high accuracy. The stability of the fully discrete scheme of the method on the time step is stable unconditionally with a high convergence rate. Originality/value This work will provide an interpolating meshless method to study the numerical solutions of the time-fractional diffusion equation using the IEFG method.


2011 ◽  
Vol 66 (5) ◽  
pp. 281-288 ◽  
Author(s):  
Subir Das ◽  
Rajnesh Kumar ◽  
Praveen Kumar Gupta

August 12, 2010 The homotopy perturbation method is used to find an approximate analytic solution of the problem involving a space-time fractional diffusion equation with a moving boundary. This mathematical technique is used to solve the problem which performs extremely well in terms of efficiency and simplicity. Numerical solutions of the problem reveal that only a few iterations are needed to obtain accurate approximate analytical solutions. The results obtained are presented graphically.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hu Chen ◽  
Martin Stynes

Abstract Time-fractional initial-boundary problems of parabolic type are considered. Previously, global error bounds for computed numerical solutions to such problems have been provided by Liao et al. (SIAM J. Numer. Anal. 2018, 2019) and Stynes et al. (SIAM J. Numer. Anal. 2017). In the present work we show how the concept of complete monotonicity can be combined with these older analyses to derive local error bounds (i.e., error bounds that are sharper than global bounds when one is not close to the initial time t = 0 {t=0} ). Furthermore, we show that the error analyses of the above papers are essentially the same – their key stability parameters, which seem superficially different from each other, become identical after a simple rescaling. Our new approach is used to bound the global and local errors in the numerical solution of a multi-term time-fractional diffusion equation, using the L1 scheme for the temporal discretisation of each fractional derivative. These error bounds are α-robust. Numerical results show they are sharp.


Sign in / Sign up

Export Citation Format

Share Document