scholarly journals Automation of systematic reviews through artificial neural network modeling and machine learning: A methodological protocol report (Preprint)

2020 ◽  
Author(s):  
Gabriel Ferraz Ferreira Sr ◽  
Marcos Gonçalves Quiles Sr ◽  
Tiago Santana Nazare Sr ◽  
Solange Oliveira Rezende ◽  
Marcelo Demarzo Sr

UNSTRUCTURED Background: A systematic review can be defined as a summary of the evidence found in the literature via a systematic search in the available scientific databases. One of the steps involved is article selection, which is typically a laborious task. Machine learning and artificial intelligence can be important tools in automating this step, thus aiding researchers. The aim of this study is to create models based on an artificial neural network system and machine learning to automate the article selection process in systematic reviews in the area of Mindfulness. Methods: The study will be performed using R programming software. The system will consist of six main steps: 1) data import; 2) exclusion of duplicates; 3) exclusion of nonarticles; 4) article reading and model creation using artificial neural networks; 5) comparison of the models; and 6) system sharing. We will choose the 10 most relevant systematic reviews published in the fields of “Mindfulness and Health Promotion” and “Orthopedics and Traumatology” (control group) to serve as a test of the effectiveness of the article selection. The final results for these two fields will be compared. Conclusion: An automated system with a modifiable sensitivity will be created to select scientific articles in systematic review that can be expanded to various fields. We will disseminate our results and models through the “Observatory of Evidence” in public health, an open and online platform that will assist researchers in systematic reviews.

2020 ◽  
Vol 15 ◽  
Author(s):  
Elham Shamsara ◽  
Sara Saffar Soflaei ◽  
Mohammad Tajfard ◽  
Ivan Yamshchikov ◽  
Habibollah Esmaili ◽  
...  

Background: Coronary artery disease (CAD) is an important cause of mortality and morbidity globally. Objective : The early prediction of the CAD would be valuable in identifying individuals at risk, and in focusing resources on its prevention. In this paper, we aimed to establish a diagnostic model to predict CAD by using three approaches of ANN (pattern recognition-ANN, LVQ-ANN, and competitive ANN). Methods: One promising method for early prediction of disease based on risk factors is machine learning. Among different machine learning algorithms, the artificial neural network (ANN) algo-rithms have been applied widely in medicine and a variety of real-world classifications. ANN is a non-linear computational model, that is inspired by the human brain to analyze and process complex datasets. Results: Different methods of ANN that are investigated in this paper indicates in both pattern recognition ANN and LVQ-ANN methods, the predictions of Angiography+ class have high accuracy. Moreover, in CNN the correlations between the individuals in cluster ”c” with the class of Angiography+ is strongly high. This accuracy indicates the significant difference among some of the input features in Angiography+ class and the other two output classes. A comparison among the chosen weights in these three methods in separating control class and Angiography+ shows that hs-CRP, FSG, and WBC are the most substantial excitatory weights in recognizing the Angiography+ individuals although, HDL-C and MCH are determined as inhibitory weights. Furthermore, the effect of decomposition of a multi-class problem to a set of binary classes and random sampling on the accuracy of the diagnostic model is investigated. Conclusion : This study confirms that pattern recognition-ANN had the most accuracy of performance among different methods of ANN. That’s due to the back-propagation procedure of the process in which the network classify input variables based on labeled classes. The results of binarization show that decomposition of the multi-class set to binary sets could achieve higher accuracy.


Author(s):  
Soroush Soltani ◽  
Taha Roodbar Shojaei ◽  
Nasrin Khanian ◽  
Thomas Shean Yaw Choong ◽  
Nilofar Asim ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 766
Author(s):  
Dohan Oh ◽  
Julia Race ◽  
Selda Oterkus ◽  
Bonguk Koo

Mechanical damage is recognized as a problem that reduces the performance of oil and gas pipelines and has been the subject of continuous research. The artificial neural network in the spotlight recently is expected to be another solution to solve the problems relating to the pipelines. The deep neural network, which is on the basis of artificial neural network algorithm and is a method amongst various machine learning methods, is applied in this study. The applicability of machine learning techniques such as deep neural network for the prediction of burst pressure has been investigated for dented API 5L X-grade pipelines. To this end, supervised learning is employed, and the deep neural network model has four layers with three hidden layers, and the neural network uses the fully connected layer. The burst pressure computed by deep neural network model has been compared with the results of finite element analysis based parametric study, and the burst pressure calculated by the experimental results. According to the comparison results, it showed good agreement. Therefore, it is concluded that deep neural networks can be another solution for predicting the burst pressure of API 5L X-grade dented pipelines.


Sign in / Sign up

Export Citation Format

Share Document