scholarly journals Self-organizing Clustering: Non-hierarchical Clustering for Large Scale DNA Sequence Data

2007 ◽  
Vol 3 ◽  
pp. 193-197 ◽  
Author(s):  
Kou Amano ◽  
Hiroaki Ichikawa ◽  
Hidemitsu Nakamura ◽  
Hisataka Numa ◽  
Kaoru Fukami-Kobayashi ◽  
...  
2017 ◽  
Author(s):  
Erik Garrison ◽  
Jouni Sirén ◽  
Adam M. Novak ◽  
Glenn Hickey ◽  
Jordan M. Eizenga ◽  
...  

AbstractReference genomes guide our interpretation of DNA sequence data. However, conventional linear references are fundamentally limited in that they represent only one version of each locus, whereas the population may contain multiple variants. When the reference represents an individual’s genome poorly, it can impact read mapping and introduce bias. Variation graphs are bidirected DNA sequence graphs that compactly represent genetic variation, including large scale structural variation such as inversions and duplications.1 Equivalent structures are produced by de novo genome assemblers.2,3 Here we present vg, a toolkit of computational methods for creating, manipulating, and utilizing these structures as references at the scale of the human genome. vg provides an efficient approach to mapping reads onto arbitrary variation graphs using generalized compressed suffix arrays,4 with improved accuracy over alignment to a linear reference, creating data structures to support downstream variant calling and genotyping. These capabilities make using variation graphs as reference structures for DNA sequencing practical at the scale of vertebrate genomes, or at the topological complexity of new species assemblies.


Zootaxa ◽  
2011 ◽  
Vol 2946 (1) ◽  
pp. 29 ◽  
Author(s):  
ANTHONY C. GILL ◽  
RANDALL D. MOOI

Wiley et al. (2011) begin their critique of our paper (Mooi & Gill, 2010) with an assertion: “we need to make itclear that the foundation of their arguments rests not on scientific rigor, but rather on opinions about the re-classification of fishes using molecular data. This bias is the reason that they only targeted researchers who proposed changes in the higher-level taxonomy of fishes using phylogenetic hypotheses based on DNA sequence data (Miya et al. 2007, Smith & Craig 2007, Thacker 2009). In criticizing these studies, they do not suggest any alternative relationships or provide any counter evidence to the proposed relationships.” And on page 8, they apparently read our thoughts (aside from the title, none of the words in quotations was written by us in that context) and concluded: “Mooi & Gill entitled their paper “A crisis in fish systematics” because they long for the days when “real” ichthyologists found “meaningful” characters and “true” relationships.” Finally (p. 9), they contend that “Mooi & Gill’s various studies are usually focused on Johnson & Patterson’s (1993: 555) “disparate twigs of the [percomorph] tree,” whereas the explicit studies they criticize are large-scale and taxon rich datasets that have not otherwise been analyzed in Percomorpha.”


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Heleen Plaisier ◽  
Thomas R. Meagher ◽  
Daniel Barker

Abstract Objective Visualisation methods, primarily color-coded representation of sequence data, have been a predominant means of representation of DNA data. Algorithmic conversion of DNA sequence data to sound—sonification—represents an alternative means of representation that uses a different range of human sensory perception. We propose that sonification has value for public engagement with DNA sequence information because it has potential to be entertaining as well as informative. We conduct preliminary work to explore the potential of DNA sequence sonification in public engagement with bioinformatics. We apply a simple sonification technique for DNA, in which each DNA base is represented by a specific note. Additionally, a beat may be added to indicate codon boundaries or for musical effect. We report a brief analysis from public engagement events we conducted that featured this method of sonification. Results We report on use of DNA sequence sonification at two public events. Sonification has potential in public engagement with bioinformatics, both as a means of data representation and as a means to attract audience to a drop-in stand. We also discuss further directions for research on integration of sonification into bioinformatics public engagement and education.


Zootaxa ◽  
2020 ◽  
Vol 4766 (3) ◽  
pp. 472-484
Author(s):  
HANNAH E. SOM ◽  
L. LEE GRISMER ◽  
PERRY L. JR. WOOD ◽  
EVAN S. H. QUAH ◽  
RAFE M. BROWN ◽  
...  

Liopeltis is a genus of poorly known, infrequently sampled species of colubrid snakes in tropical Asia. We collected a specimen of Liopeltis from Pulau Tioman, Peninsular Malaysia, that superficially resembled L. philippina, a rare species that is endemic to the Palawan Pleistocene Aggregate Island Complex, western Philippines. We analyzed morphological and mitochondrial DNA sequence data from the Pulau Tioman specimen and found distinct differences to L. philippina and all other congeners. On the basis of these corroborated lines of evidence, the Pulau Tioman specimen is described as a new species, L. tiomanica sp. nov. The new species occurs in sympatry with L. tricolor on Pulau Tioman, and our description of L. tiomanica sp. nov. brings the number of endemic amphibians and reptiles on Pulau Tioman to 12. 


Sign in / Sign up

Export Citation Format

Share Document