scholarly journals 3-D Flood Flow Structures in a Doubly Meandering Compound Channel under Dominant Relative Depth

2008 ◽  
Vol 11 ◽  
pp. 735-743
Author(s):  
G. M. Tarekul Islam ◽  
Yoshihisa Kawahara ◽  
Nobuyuki Tamai
2018 ◽  
Vol 65 ◽  
pp. 07001
Author(s):  
Abdul Haslim Abdul Shukor Lim ◽  
Zulhilmi Ismai ◽  
Mohamad Hidayat Jama ◽  
Md. Ridzuan Makhtar

Capabilities of numerical tools to simulate fluid problems significantly depend on its methods to solve for the Navier-Stokes equations. Different dimensional computing tools using the same horizontal meshes were used to simulate flow conditions inside non- and vegetation meandering compound channel. Both tools give good agreement for simulations of depth-averaged streamwise velocity inside the main channel, but its capabilities vary significantly for simulations on floodplains. Lower relative depth recorded a higher percentage of errors than flow with higher relative depth. Vegetation along the main channel increased the flows complexity especially in the area near the vegetation thus reducing the simulation capabilities of the computing tools. Simulations work by TELEMAC-3D significantly better in the areas with highly dimensional and turbulence conditions. TELEMAC-2D is still useful because of its simplicity and lower computing time and resources required.


2000 ◽  
Vol 44 ◽  
pp. 873-878 ◽  
Author(s):  
Kenichiio KOBAYASHI ◽  
Nobuyuki TAMAI ◽  
G.M.Tarekul ISlam

2004 ◽  
pp. 423-430
Author(s):  
D Bousmar ◽  
B Denis ◽  
Y Zech

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Yonghui Xie ◽  
Ping Li ◽  
Jibing Lan ◽  
Di Zhang

Based on combined particle image velocimetry (PIV) and numerical simulation, the flow and heat transfer characteristics of a single jet impinging on a dimpled surface for Dj/D = 0.318, 0.5, 1.045; δ/D = 0.1, 0.2, 0.3; Rej = 5000, 10,000, 23,000, were investigated for the first time. The distance between jet nozzle and plate was fixed and equal to H/D = 2. The results show that the flow structures of the single jet impingement with dimpled target surface can be summarized into three typical conceptual flow structures. Particularly, the third flow structure in the form of a large toroidal vortex bound up with the dimple is the result of the centrifugal force of the flow deflection at the stagnation region and spherical centrifugal force of the deep dimple surface. The heat transfer area increases when the dimple relative depth increases. For the cases of Dj/D = 0.318 and 0.5, the area increasing dominate the heat transfer process, and the average Nusselt number increases with the increasing of dimple relative depth. For the cases with Dj/D = 1.045, the local Nusselt number reduction dominate the heat transfer process, the average Nusselt number decreases with the increasing of dimple relative depth. The average Nusselt number of the Dj/D = 0.318 and 0.5 cases is larger than the baseline case, while those of the Dj/D = 1.045 cases are smaller than the baseline case. Furthermore, the correlative expressions of the local Nusselt number, stagnation points Nusselt number and average Nusselt number are obtained.


Author(s):  
N. P. Benfer ◽  
B. A. King ◽  
C. J. Lemckert ◽  
S. Zigic

Sign in / Sign up

Export Citation Format

Share Document