scholarly journals IN-SITU CONSOLIDATION BEHAVIOR OF PLEISTOCENE CLAY BELOW SEABED AT KOBE AIRPORT

2006 ◽  
Vol 62 (4) ◽  
pp. 780-792
Author(s):  
Noritaka HASEGAWA ◽  
Tamotsu MATSUI ◽  
Yasuo TANAKA ◽  
Yoshiki TAKAHASHI ◽  
Mitsuhiro NAMBU
2014 ◽  
Vol 33 (22) ◽  
pp. 2046-2063 ◽  
Author(s):  
Matthew Chiasson ◽  
Jeremy Laliberté

A vacuum consolidation process has been investigated for use with commingled thermoplastic composites. In particular, the vacuum consolidation behavior of commingled polypropylene/glass and commingled nylon/carbon precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure and the thickness change of the laminates was measured by the use of a novel in situ non-contact eddy current displacement sensing technique. An empirical consolidation model was then fit to the measured experimental results to be used to predict future process cycles. The overall quality of the resulting laminates was assessed using cross-sectional analysis and mechanical strength and stiffness testing. Dynamic mechanical analysis and differential scanning calorimetry were also used to measure the physical properties of laminates produced using differing consolidation cycles to further assess the quality of the resulting laminates. The use of a non-contact in situ consolidation measurement technique was shown to be a useful tool for assessing the consolidation behavior of commingled thermoplastic laminates.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document