GAS TRANSFER PHENOMENA BENEATH AIR-WATER INTERFACE IN OPEN-CHANNEL FLOW WITH SMALL ASPECT RATIO

Author(s):  
Michio SANJOU ◽  
Iehisa NEZU
2002 ◽  
Vol 2002.3 (0) ◽  
pp. 31-32
Author(s):  
Yasuo NAKANISHI ◽  
Toshihiro FUNANAKA ◽  
Kouji NAGATA ◽  
Satoru KOMORI

2012 ◽  
Vol 13 ◽  
pp. N18 ◽  
Author(s):  
Jin Lee ◽  
Jungsoo Suh ◽  
Hyung Jin Sung ◽  
Bjørnar Pettersen

2018 ◽  
Vol 40 ◽  
pp. 05045
Author(s):  
Minakshee Mahananda ◽  
Prashanth Reddy Hanmaiahgari

The effect of aspect ratio on the higher order statistics of velocity fluctuations in a hydraulically rough turbulent open channel flow is investigated. In this regard, an experiment was conducted in a rough bed narrow open channel flow of aspect ratio equal to three and the instantaneous flow velocities were measured using a Nortek Vectrino+ Acoustic Doppler Velocimeter. To understand the effect of aspect ratio, the results obtained from the present study are compared with the literature data of approximately same Reynolds number and bed roughness in a wide open channel flow for turbulence intensities and higher order statistics of velocity fluctuations. Comparison of turbulence intensities between Narrow OCF and Wide OCF shows occurrence of higher streamwise and vertical turbulence intensities in the outer region of Narrow OCF. The results of third order moments of velocity fluctuations are sensitive to aspect ratio in the outer region.


2018 ◽  
Vol 45 (9) ◽  
pp. 780-794 ◽  
Author(s):  
Minakshee Mahananda ◽  
Prashanth Reddy Hanmaiahgari ◽  
Ram Balachandar

This study attempts to unravel the effect of aspect ratio on the turbulence characteristics in developing and fully developed narrow open channel flows. In this regard, experiments were conducted in a rough bed open channel flow. Instantaneous 3D velocities were acquired using an acoustic Doppler velocimeter at various locations along the centerline of the flume. The variables of interest include the mean components of the flow velocity, turbulence intensity, wall normal Reynolds shear stress, correlation coefficient, turbulence kinetic energy, and anisotropy. A new correlation between the equivalent roughness and velocity shift from the smooth wall logarithmic equation as a function of aspect ratio is proposed. Aspect ratio was found to influence the velocity characteristics throughout the depth in the developing flow region, while the effects are confined to the outer layer for fully developed flows. New equations to describe the variation of turbulence intensities and turbulent kinetic energy are proposed for narrow open channel flows. Reynolds stress anisotropy analysis reveals that level of anisotropy in narrow open channel flow is less than in wide open channel flows. Finally, a linear regression model is proposed to predict flow development length in narrow open channel flows with a rough bed.


2013 ◽  
Vol 733 ◽  
pp. 588-624 ◽  
Author(s):  
Damon E. Turney ◽  
Sanjoy Banerjee

AbstractRates of gas transfer between air and water remain difficult to predict or simulate due to the wide range of length and time scales and lack of experimental observations of near-surface fluid velocity and gas concentrations. The surface renewal model (SR) and surface divergence model (SD) provide the two leading models of the process, yet they remain poorly tested by observation because near-surface velocity is difficult to measure. To contribute to evaluation of these models, we apply new techniques called interfacial particle imaging velocimetry (IPIV) and three-dimensional IPIV (3D-IPIV) for measuring water velocities within a millimetre of a moving deformable air–water interface. The latter technique (3D-IPIV) simultaneously measures the air–water interface topography. We apply these techniques to turbulent open-channel water flows and wind-sheared water flows with microscale breaking waves. Additional measurements made for each flow condition are bulk turbulent length scales, bulk turbulent velocity scales, air–water gas transfer rates, friction velocities, and wave characteristics. We analyse these data to test the surface divergence models for interfacial gas transfer. The first test is of predictions from the Banerjee (Ninth International Heat Transfer Conference, Keynote Lectures, vol. 1, 1990, pp. 395–418, Hemisphere Press) surface divergence model for gas transfer for homogeneous isotropic turbulence interacting with a planar free surface. The second test is of predictions from the McCready, Vassiliadou and Hanratty (AIChE J., vol. 32(7), 1986, pp. 1108–1115) surface divergence model, as applied in both open-channel flow and wind-sheared wavy flows. We find the predictions of the Banerjee and McCreadyet al. models to agree with the experimental data taken for open-channel flow conditions. On the other hand, for wind-driven flows with wind waves we find disagreement between the McCreadyet al. predictions and our direct measurements of the gas transfer coefficient. The cause of the disagreement is investigated by Lagrangian tracking of surface divergence of surface water patches, and by analysis of the corresponding Lagrangian time series with advection–diffusion concepts. A quantitative criterion based on surface divergence strength and lifetime is proposed to distinguish the effectiveness of each near-surface motion toward causing interfacial gas transfer. Capillary waves are found to contribute to surface divergence but to have too short a time scale to cause interfacial gas transfer. As wind speed increases, the presence and intensity on the air–water interface of capillary waves and other ineffective near-surface motions is diminished by the rise of turbulent wakes from microscale breaking waves thus causing the disagreement of the surface divergence model’s predicted transfer rates with measurements. A model of air–water gas transfer that combines the surface renewal and surface divergence models is formulated and found to agree with the data from both open-channel flows and wind-driven flows without requiring an empirical coefficient.


Sign in / Sign up

Export Citation Format

Share Document