scholarly journals Estimation of the temperature distribution in urban areas by using remote sensing data.

1994 ◽  
Vol 22 ◽  
pp. 267-273 ◽  
Author(s):  
Shinji KANEKO ◽  
Toshiie MAEDA ◽  
Takahito UENO ◽  
Hidefumi IMURA
2016 ◽  
Vol 189 ◽  
pp. 439-454 ◽  
Author(s):  
David C. Carslaw ◽  
Tim P. Murrells ◽  
Jon Andersson ◽  
Matthew Keenan

Reducing ambient concentrations of nitrogen dioxide (NO2) remains a key challenge across many European urban areas, particularly close to roads. This challenge mostly relates to the lack of reduction in emissions of oxides of nitrogen (NOx) from diesel road vehicles relative to the reductions expected through increasingly stringent vehicle emissions legislation. However, a key component of near-road concentrations of NO2 derives from directly emitted (primary) NO2 from diesel vehicles. It is well-established that the proportion of NO2 (i.e. the NO2/NOx ratio) in vehicle exhaust has increased over the past decade as a result of vehicle after-treatment technologies that oxidise carbon monoxide and hydrocarbons and generate NO2 to aid the emissions control of diesel particulate. In this work we bring together an analysis of ambient NOx and NO2 measurements with comprehensive vehicle emission remote sensing data obtained in London to better understand recent trends in the NO2/NOx ratio from road vehicles. We show that there is evidence that NO2 concentrations have decreased since around 2010 despite less evidence of a reduction in total NOx. The decrease is shown to be driven by relatively large reductions in the amount of NO2 directly emitted by vehicles; from around 25 vol% in 2010 to 15 vol% in 2014 in inner London, for example. The analysis of NOx and NO2 vehicle emission remote sensing data shows that these reductions have been mostly driven by reduced NO2/NOx emission ratios from heavy duty vehicles and buses rather than light duty vehicles. However, there is also evidence from the analysis of Euro 4 and 5 diesel passenger cars that as vehicles age the NO2/NOx ratio decreases. For example the NO2/NOx ratio decreased from 29.5 ± 2.0% in Euro 5 diesel cars up to one year old to 22.7 ± 2.5% for four-year old vehicles. At some roadside locations the reductions in primary NO2 have had a large effect on reducing both the annual mean and number of hourly exceedances of the European Limit Values of NO2.


Author(s):  
X. F. Sun ◽  
X. G. Lin

As an intermediate step between raw remote sensing data and digital urban maps, remote sensing data classification has been a challenging and long-standing research problem in the community of remote sensing. In this work, an effective classification method is proposed for classifying high-resolution remote sensing data over urban areas. Starting from high resolution multi-spectral images and 3D geometry data, our method proceeds in three main stages: feature extraction, classification, and classified result refinement. First, we extract color, vegetation index and texture features from the multi-spectral image and compute the height, elevation texture and differential morphological profile (DMP) features from the 3D geometry data. Then in the classification stage, multiple random forest (RF) classifiers are trained separately, then combined to form a RF ensemble to estimate each sample’s category probabilities. Finally the probabilities along with the feature importance indicator outputted by RF ensemble are used to construct a fully connected conditional random field (FCCRF) graph model, by which the classification results are refined through mean-field based statistical inference. Experiments on the ISPRS Semantic Labeling Contest dataset show that our proposed 3-stage method achieves 86.9% overall accuracy on the test data.


Author(s):  
C. H. Hardy ◽  
A. L. Nel

The city of Johannesburg contains over 10 million trees and is often referred to as an urban forest. The intra-urban spatial variability of the levels of vegetation across Johannesburg’s residential regions has an influence on the urban heat island effect within the city. Residential areas with high levels of vegetation benefit from cooling due to evapo-transpirative processes and thus exhibit weaker heat island effects; while their impoverished counterparts are not so fortunate. The urban heat island effect describes a phenomenon where some urban areas exhibit temperatures that are warmer than that of surrounding areas. The factors influencing the urban heat island effect include the high density of people and buildings and low levels of vegetative cover within populated urban areas. This paper describes the remote sensing data sets and the processing techniques employed to study the heat island effect within Johannesburg. In particular we consider the use of multi-sensorial multi-temporal remote sensing data towards a predictive model, based on the analysis of influencing factors.


2019 ◽  
Vol 11 (16) ◽  
pp. 4488 ◽  
Author(s):  
Nannan Gao ◽  
Fen Li ◽  
Hui Zeng ◽  
Daniël van Bilsen ◽  
Martin De Jong

Aging, shrinking cities, urban agglomerations and other new key terms continue to emerge when describing the large-scale population changes in various cities in mainland China. It is important to simulate the distribution of residential populations at a coarse scale to manage cities as a whole, and at a fine scale for policy making in infrastructure development. This paper analyzes the relationship between the DN (Digital number, value assigned to a pixel in a digital image) value of NPP-VIIRS (the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite) and LuoJia1-01 and the residential populations of urban areas at a district, sub-district, community and court level, to compare the influence of resolution of remote sensing data by taking urban land use to map out auxiliary data in which first-class (R1), second-class (R2) and third-class residential areas (R3) are distinguished by house price. The results show that LuoJia1-01 more accurately analyzes population distributions at a court level for second- and third-class residential areas, which account for over 85% of the total population. The accuracy of the LuoJia1-01 simulation data is higher than that of Landscan and GHS (European Commission Global Human Settlement) population. This can be used as an important tool for refining the simulation of residential population distributions. In the future, higher-resolution night-time light data could be used for research on accurate simulation analysis that scales down large-scale populations.


2017 ◽  
Vol 193 ◽  
pp. 65-75 ◽  
Author(s):  
Chunyang He ◽  
Bin Gao ◽  
Qingxu Huang ◽  
Qun Ma ◽  
Yinyin Dou

2021 ◽  
Vol 13 (18) ◽  
pp. 3710
Author(s):  
Abolfazl Abdollahi ◽  
Biswajeet Pradhan ◽  
Nagesh Shukla ◽  
Subrata Chakraborty ◽  
Abdullah Alamri

Terrestrial features extraction, such as roads and buildings from aerial images using an automatic system, has many usages in an extensive range of fields, including disaster management, change detection, land cover assessment, and urban planning. This task is commonly tough because of complex scenes, such as urban scenes, where buildings and road objects are surrounded by shadows, vehicles, trees, etc., which appear in heterogeneous forms with lower inter-class and higher intra-class contrasts. Moreover, such extraction is time-consuming and expensive to perform by human specialists manually. Deep convolutional models have displayed considerable performance for feature segmentation from remote sensing data in the recent years. However, for the large and continuous area of obstructions, most of these techniques still cannot detect road and building well. Hence, this work’s principal goal is to introduce two novel deep convolutional models based on UNet family for multi-object segmentation, such as roads and buildings from aerial imagery. We focused on buildings and road networks because these objects constitute a huge part of the urban areas. The presented models are called multi-level context gating UNet (MCG-UNet) and bi-directional ConvLSTM UNet model (BCL-UNet). The proposed methods have the same advantages as the UNet model, the mechanism of densely connected convolutions, bi-directional ConvLSTM, and squeeze and excitation module to produce the segmentation maps with a high resolution and maintain the boundary information even under complicated backgrounds. Additionally, we implemented a basic efficient loss function called boundary-aware loss (BAL) that allowed a network to concentrate on hard semantic segmentation regions, such as overlapping areas, small objects, sophisticated objects, and boundaries of objects, and produce high-quality segmentation maps. The presented networks were tested on the Massachusetts building and road datasets. The MCG-UNet improved the average F1 accuracy by 1.85%, and 1.19% and 6.67% and 5.11% compared with UNet and BCL-UNet for road and building extraction, respectively. Additionally, the presented MCG-UNet and BCL-UNet networks were compared with other state-of-the-art deep learning-based networks, and the results proved the superiority of the networks in multi-object segmentation tasks.


Sign in / Sign up

Export Citation Format

Share Document