scholarly journals FLOOD DAMAGE MITIGATION EFFECT OF GROVES IN THE FLOODPLAIN, STUDY ON THE YOSASA RIVER BASIN

2001 ◽  
Vol 45 ◽  
pp. 913-918 ◽  
Author(s):  
Kenichiro TACHI ◽  
Tadashi SUETSUGI ◽  
Hiroaki KOBAYASHI ◽  
Mahito TOMARU
2013 ◽  
Vol 13 (2) ◽  
pp. 291-298 ◽  
Author(s):  
Lim Yeol Lee ◽  
Soo Jun Kim ◽  
Yon Soo Kim ◽  
Hung Soo Kim

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 896
Author(s):  
Thanh Thu Nguyen ◽  
Makoto Nakatsugawa ◽  
Tomohito J. Yamada ◽  
Tsuyoshi Hoshino

This study aims to evaluate the change in flood inundation in the Chitose River basin (CRB), a tributary of the Ishikari River, considering the extreme rainfall impacts and topographic vulnerability. The changing impacts were assessed using a large-ensemble rainfall dataset with a high resolution of 5 km (d4PDF) as input data for the rainfall–runoff–inundation (RRI) model. Additionally, the prediction of time differences between the peak discharge in the Chitose River and peak water levels at the confluence point intersecting the Ishikari River were improved compared to the previous study. Results indicate that due to climatic changes, extreme river floods are expected to increase by 21–24% in the Ishikari River basin (IRB), while flood inundation is expected to be severe and higher in the CRB, with increases of 24.5, 46.5, and 13.8% for the inundation area, inundation volume, and peak inundation depth, respectively. Flood inundation is likely to occur in the CRB downstream area with a frequency of 90–100%. Additionally, the inundation duration is expected to increase by 5–10 h here. Moreover, the short time difference (0–10 h) is predicted to increase significantly in the CRB. This study provides useful information for policymakers to mitigate flood damage in vulnerable areas.


2014 ◽  
Vol 40 ◽  
pp. 69-77 ◽  
Author(s):  
Jennifer K. Poussin ◽  
W.J. Wouter Botzen ◽  
Jeroen C.J.H. Aerts

IFLA Journal ◽  
2021 ◽  
pp. 034003522110377
Author(s):  
Céline Allain ◽  
Sophie Guérinot

During a flood alert, the decision to evacuate a threatened collection of a library is an important one. If not thought out carefully, a hastily executed move can expose valuable collections to unforeseen threats. Although floods are usually slow to develop in Paris, the decision to make a preventive evacuation must be taken at the appropriate moment, considering the time needed for the relocation, the reality of the threat and the need for service continuity. In the context of its flood protection plan, the National Library of France has conceived a box model that contributes to saving time in case of a flood and prevents damage during an evacuation. Combining accessibility to documents with security requirements, this model can be implemented in different contexts.


2021 ◽  
Vol 930 (1) ◽  
pp. 012082
Author(s):  
Ynaotou ◽  
R Jayadi ◽  
A P Rahardjo ◽  
D A Puspitosari

Abstract It is common practice that flood hydrograph simulations help to provide better flood prediction and flood damage reduction planning. These efforts require information on flood-prone areas identification from the hydrological and hydraulic analysis results. Historically, the Ciberang River Basin has experienced floods. Those floods cause the loss of human life and damage some houses along the river’s channels, especially in Lebak District, Banten Province, Indonesia. The main objective of this study is to identify flood-prone areas based on the simulation result of a hydrologic and hydraulic model of catchment response due to several extreme rainfall events using HEC-HMS and HEC-RAS software. Rainfall and discharge data measured at the Ciberang-Sabagi water level gauge on 10 January 2013 were used to calibrate hydrological watershed parameters. The hydraulics channel routing is started from the planned location of the Sabo dam to the downstream control point. The next stage was the simulation of rainfall-runoff transformation and 1D unsteady flow channel routing for the 2, 5, and 10-years floods return periods. The main result of this study is a flood hazards map that shows the spatial distribution of the area and inundation depth for each return period of the flood.


2019 ◽  
Vol 8 (2) ◽  
pp. 55-69 ◽  
Author(s):  
Badri Bhakta Shrestha

Assessment of flood hazard and damage is a prerequisite for flood risk management in the river basins. The mitigation plans for flood risk management are mostly evaluated in quantified terms as it is important in decision making process. Therefore, analysis of flood hazards and quantitative assessment of potential flood damage is very essential for mitigating and managing flood risk. This study focused on assessment of flood hazard and quantitative agricultural damage in the Bagmati River basin including Lal Bakaiya River basin of Nepal under climate change conditions. Flood hazards were simulated using Rainfall Runoff Inundation (RRI) model. MRI-AGCM3.2S precipitation outputs of present and future climate scenarios were used to simulate flood hazards, flood inundation depth, and duration. Flood damage was assessed in the agricultural sector, focusing on flood damage to rice crops. The flood damage assessment was conducted by defining flood damage to rice crops as a function of flood depth, duration, and growth stage of rice plants and using depth-duration-damage function curves for each growth stage of rice plants. The hazard simulation and damage assessment were conducted for 50- and 100-year return period cases. The results show that flood inundation area and agricultural damage area may increase in the future by 41.09 % and 39.05 % in the case of 50-year flood, while 44.98 % and 40.76 % in the case of 100-year flood. The sensitivity to changes in flood extent area and damage with the intensity of return period was also analyzed.


Sign in / Sign up

Export Citation Format

Share Document