channel routing
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 0)

2021 ◽  
Vol 930 (1) ◽  
pp. 012082
Author(s):  
Ynaotou ◽  
R Jayadi ◽  
A P Rahardjo ◽  
D A Puspitosari

Abstract It is common practice that flood hydrograph simulations help to provide better flood prediction and flood damage reduction planning. These efforts require information on flood-prone areas identification from the hydrological and hydraulic analysis results. Historically, the Ciberang River Basin has experienced floods. Those floods cause the loss of human life and damage some houses along the river’s channels, especially in Lebak District, Banten Province, Indonesia. The main objective of this study is to identify flood-prone areas based on the simulation result of a hydrologic and hydraulic model of catchment response due to several extreme rainfall events using HEC-HMS and HEC-RAS software. Rainfall and discharge data measured at the Ciberang-Sabagi water level gauge on 10 January 2013 were used to calibrate hydrological watershed parameters. The hydraulics channel routing is started from the planned location of the Sabo dam to the downstream control point. The next stage was the simulation of rainfall-runoff transformation and 1D unsteady flow channel routing for the 2, 5, and 10-years floods return periods. The main result of this study is a flood hazards map that shows the spatial distribution of the area and inundation depth for each return period of the flood.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3429
Author(s):  
Shuaihong Zang ◽  
Zhijia Li ◽  
Cheng Yao ◽  
Ke Zhang ◽  
Mingkun Sun ◽  
...  

The Xin’anjiang model is a conceptual hydrological model, which has an essential application in humid and semi-humid regions. In the model, the parameters estimation of runoff routing has always been a significant problem in hydrology. The quantitative relationship between parameters of the lag-and-route method and catchment characteristics has not been well studied. In addition, channels in Muskingum method of the Xin’anjiang model are assumed to be virtual channels. Therefore, its parameters need to be estimated by observed flow data. In this paper, a new routing scheme for the Xin’anjiang model is proposed, adopting isochrones method for overland flow and the grid-to-grid Muskingum–Cunge–Todini (MCT) method for channel routing, so that the routing parameters can be estimated according to the geographic information. For the new routing scheme the average overland flow velocity can be determined through the land cover and overland slope, and the channel routing parameters can be determined through channel geometric characteristic, stream order and channel gradient. The improved model was applied at a 90 m grid scale to a nested watershed located in Anhui province, China. The parent Tunxi watershed, with a drainage area of 2692 km2, contains four internal points with available observed streamflow data, allowing us to evaluate the model’s ability to simulate the hydrologic processes within the watershed. Calibration and verification of the improved model were carried out for hourly time scales using hourly streamflow data from 1982 to 2005. Model performance was assessed by comparing simulated and observed flows at the watershed outlet and interior gauging stations. The performance of both original and new runoff routing schemes were tested and compared at hourly scale. Similar and satisfactory performances were achieved at the outlet both in the new runoff routing scheme using the estimated routing parameters and in the original runoff routing scheme using the calibrated routing parameters, with averaged Nash-Sutcliffe efficiency (NSE) of 0.92 and 0.93, respectively. Moreover, the new runoff routing scheme is also able to reproduce promising hydrographs at internal gauges in study catchment with the mean NSE ranging from 0.84 to 0.88. These results indicate that the parameter estimation approach is efficient and the developed model can satisfactorily simulate not only the streamflow at the parent watershed outlet, but also the flood hydrograph at the interior gauging points without model recalibration. This study can provide some guidance for the application of the Xin’anjiang model in ungauged areas.


Author(s):  
Tarak Nath Mandal ◽  
Kaushik Dey ◽  
Ankita Dutta Banik ◽  
Ranjan Mehera ◽  
Rajat Kumar Pal
Keyword(s):  

The Very Deep Submicron Technology (VDSM) shrinking rapidly, we have 22nm, 14nm, 7nm and now research going on 5nm technology. That means size of the transistor shrinking, and number of interconnections increased as well. Resulting interconnections playing a major role in delay, IR drop, area etc. To reduce the delay, we are utilizing higher metal layers. Further we gone for Compact Automatic Metal Routing, nothing but Over the cell channel routing to efficiently perform routing, but the problem for such type of routing technique, stacked vias needed and that results increased resistance, delay, IR drop will degrade the performance. That may be obstacle to meet timing in Clock Tree Synthesis stage (CTS). This paper mainly focus on reducing the delay further by designing the via structure by using the tool cadence encounter


Author(s):  
Tarak Nath Mandal ◽  
Ankita Dutta Banik ◽  
Kaushik Dey ◽  
Ranjan Mehera ◽  
Rajat Kumar Pal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document