scholarly journals Chatbot in Bahasa Indonesia using NLP to Provide Banking Information

Author(s):  
Abidah Elcholiqi ◽  
Aina Musdholifah

FAQs are mostly provided on the company's website to inform their service and product. It's just that the FAQ is usually less interactive and presents too much information that is less practical. Chatbot can be used as an alternative in providing FAQ. In this study, chatbots were developed for BTPN in providing information about their products, namely Jenius. Chatbot developed utilizes natural language processing so that the system can understand user queries in the form of natural language. The cosine similarity algorithm is used to find similarities between queries and patterns in the knowledge base. Patterns with the highest cosine values are considered to be most similar to user queries. It's just that, this algorithm does not pay attention to the structure of the sentence so that it adds checking the structure of the sentence with the parse tree to give weight to the pattern. This chatbot application has been tested by 10 users and it was found that the suitability of the answers with user input was 84%. Therefore the chatbot developed can be used by BTPN to provide Jenius product information to consumers more interactively and practically.

2020 ◽  
pp. 034-040
Author(s):  
O.P. Zhezherun ◽  
◽  
M.S. Ryepkin ◽  
◽  

The article describes a classification system with natural language processing. Many systems use neural networks, but it needs massive amounts of data for training, which is not always available. Authors propose to use ontologies in such systems. As example of such approach it is shown the classification system, which helps to form a list of the best candidates during the recruitment process. An overview of the methods for ontologies constructing and language analyzers appropriate for classification systems are presented. The system in the form of a knowledge base is constracted. Described system supports Ukrainian and English languages. The possible ways of system expansion is regarded.


Author(s):  
Yudi Widhiyasana ◽  
Transmissia Semiawan ◽  
Ilham Gibran Achmad Mudzakir ◽  
Muhammad Randi Noor

Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.


2019 ◽  
Vol 20 (K9) ◽  
pp. 23-30
Author(s):  
Le Thi Thuy ◽  
Phan Thi Tuoi ◽  
Quan Thanh Tho

Entity co-reference resolution and sentiment analysis are independent problems and popular research topics in the community of natural language processing. However, the combination of those two problems has not been getting much attention. Thus, this paper susgests to apply knowledge base to solve co- reference between object and aspect with sentiment. In addition, the paper also proposes the model of Ontology-based co-reference resolution in sentiment analysis for English text. Finally, we also discuss evaluation methods applied for our model and the results obtained.


2019 ◽  
Vol 17 (1) ◽  
pp. 89-97
Author(s):  
Qiao Li ◽  
Junming Liu

ABSTRACT Auditors' discussions in audit plan brainstorming sessions provide valuable knowledge on how audit engagement teams evaluate information, identify and assess risks, and make audit decisions. Collected expertise and experience from experienced auditors can be used as decision support for future audit plan engagements. With the help of Natural Language Processing (NLP) techniques, this paper proposes an intelligent NLP-based audit plan knowledge discovery system (APKDS) that can collect and extract important contents from audit brainstorming discussions and transfer the extracted contents into an audit knowledge base for future use.


2017 ◽  
Vol 11 (03) ◽  
pp. 345-371
Author(s):  
Avani Chandurkar ◽  
Ajay Bansal

With the inception of the World Wide Web, the amount of data present on the Internet is tremendous. This makes the task of navigating through this enormous amount of data quite difficult for the user. As users struggle to navigate through this wealth of information, the need for the development of an automated system that can extract the required information becomes urgent. This paper presents a Question Answering system to ease the process of information retrieval. Question Answering systems have been around for quite some time and are a sub-field of information retrieval and natural language processing. The task of any Question Answering system is to seek an answer to a free form factual question. The difficulty of pinpointing and verifying the precise answer makes question answering more challenging than simple information retrieval done by search engines. The research objective of this paper is to develop a novel approach to Question Answering based on a composition of conventional approaches of Information Retrieval (IR) and Natural Language processing (NLP). The focus is on using a structured and annotated knowledge base instead of an unstructured one. The knowledge base used here is DBpedia and the final system is evaluated on the Text REtrieval Conference (TREC) 2004 questions dataset.


2007 ◽  
pp. 86-113 ◽  
Author(s):  
Son B. Pham ◽  
Achim Hoffmann

In this chapter we discuss ways of assisting experts to develop complex knowledge bases for a variety of natural language processing tasks. The proposed techniques are embedded into an existing knowledge acquisition framework, KAFTIE, specifically designed for building knowledge bases for natural language processing. Our intelligent agent, the rule suggestion module within KAFTIE, assists the expert by suggesting new rules in order to address incorrect behavior of the current knowledge base. The suggested rules are based on previously entered rules which were “hand-crafted” by the expert. Initial experiments with the new rule suggestion module are very encouraging as they resulted in a more compact knowledge base of comparable quality to a fully hand-crafted knowledge base. At the same time the development time for the more compact knowledge base was considerably reduced.


Sign in / Sign up

Export Citation Format

Share Document